
A Theory of Permission Based on the Notion of

Derogation

Audun Stolpe

Department of Informatics, Informatikkbygget, Gaustadallen 23, N-0371 Oslo, Norway

Abstract

This paper presents a unifying theory of permission that integrates the
concept of negative permission with three concepts of positive permission,
namely explicit permission, exemption and antithetic permission. The con-
cepts are defined and logically related by paying particular attention to the
system of which they form part. A simple procedure for calculating the per-
mitted actions that can be said to be implicit in a code of norms or a policy
specification is then given.
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1. Introduction

The concept, or rather concepts, of permission is a topic of much debate
in the theory of normative systems and the philosophy of law.1 It is also,
for reasons I shall have more to say about shortly, potentially of crucial
importance for information management in open distributed systems, where
the need for principled ways of specifying allowable uses of information is
increasing—rapidly. There are several problems related to permission, but
from a logico-philosophical point of view they can all be lumped together into
the question: What is the common denominator of all permitted actions, and
how does it connect the many facets of the concept of permission?

It is generally agreed that there are two main categories of permission,
although there is no consensus yet on how they are related. The first, usually
called negative permission, is fairly simple: An action is negatively permitted
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1See e.g. [4, 5, 6, 8, 9, 10, 16, 17, 24, 25, 26, 27, 31, 33, 36].
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by a code if and only if it is not prohibited by that code. This is nonetheless
a very important concept that figures prominently in law. In criminal law, it
is known as the principle nullum crimen sine lege—there is no crime where
there is no law—where it admits of a number of interpretations depending,
among other things, on whether it is applied to the legislature or to the
adjudicating authorities. In the latter case it expresses the presumption of
the innocence of the defendant, that is, it coincides with the principle in dubio
pro reo stating that whenever there is doubt, one should rule in favour of the
accused. When the principle is applied to the legislature, on the other hand,
it says that the existence of a crime depends on there being a previous legal
provision declaring the action to be a penal offense.2 In societies in which
new regulations are continually enacted the general assumption that the non-
existence of a prohibitive rule gives rise to a permission is an important
one to defend [10]. The proliferation of novel technology, the emergence of
multi-culturalism, professionalization of areas of expertise etc. all push new
legislation into existence. Not to infringe on people’s freedom, therefore, it is
important to acknowledge that where there is no law there is leeway, rather
than, say, to rule by the spirit of law.

The concept of positive permission, on the other hand, is more elusive.
As a first approximation one may say that something is positively permitted
if and only if a code explicitly presents it as such [21, p. 391]. According to
Norwegian law, for instance, if a temporary representation of a work that is
ordinarily protected by intellectual property rights is essential to a process
whose sole purpose is to facilitate the legitimate use of the work, then it is
permitted to make copies of it. This is explicitly stated in the law, and is
in that sense a positive permission. But this leaves a central logical question
unanswered. As well as the actions that a code explicitly pronounces to be
permitted, there are others that in some sense follow from the explicit ones.
The problem is to clarify the inference from one to the other [ibid.].

In computer science the concept of permission has figured prominently in
theoretical research for many years—although often under different names
such as privilege or access right.3 The need for a rigorous definition of the
concept arose in connection with the problem of how to design systems that

2See [7] and [36] for a fuller discussion of this issues.
3See e.g. [22, 23, 30] and [32]
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would prevent information from “escaping” beyond appropriate boundaries,
usually by storing information in a set of files associated with an access policy
formulated in terms of roles and privileges.4

Not disputing the obvious merits of this line of research, Weitzner et al.
argue in a recent paper [35] that the access control paradigm is not very
well equipped to handle the rapidly evolving Web-based information ecosys-
tem as we now know it. Due to the proliferation of personal information
on the Web and the increasing analytical power available to large institu-
tions through Web search engines and other facilities, access control over a
single instance of personal data, they argue, is insufficient to guarantee the
protection of privacy when either the same information is publicly available
elsewhere or it is possible to infer it with a high degree of accuracy from
other information that is itself public [ibid., 84]. In response, Weitzner et
al. propose to shift the emphasis from data protection onto information ac-
countability, understood as the design of architectures that make the use of
information transparent and traceable. Rather than to hide it from view—
which is increasingly difficult anyway—we should aim to make it possible
to determine whether a particular use of information is appropriate under
a given set of rules, and hence to determine when individuals and institu-
tions can be held accountable for misuse, so the argument goes. Information
accountability, one might say, is a take on information management that,
unlike the effort to ensure compliance through access control, is modelled on
the actual relation between the law and its subjects [ibid. 86].

In the abstract at least, this idea makes good sense. As the information
economy grows more complex and organic, the boundary between the ’digital’
and the ’analog’ world is being erased. There is in general no clean separation
between an electronic market, say, and the rest of society. An action taken in
a digital environment may have ramifications within the environment itself—
usually in terms of the availability of information and services—or outside of
it, in terms of judicial liabilities, contractual obligations and so forth. But,
when the virtual and the real fuses, the protection of liberties becomes partly
an algorithmic problem, and that forces us to think through the concepts
involved more rigorously than we would otherwise have to.

Weitzner et al. list three architectural features that an accountable in-
formation infrastructure would need to have: It would need to have a policy

4See e.g. [1, 2, 12], and [28]
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aware transaction log that records the information pertinent to the assess-
ment of accountability. It would also need to have a policy language against
which compliance is checked, and finally it would have to provide policy-
reasoning tools to assist users in answering such questions as: Is this data
allowed to be used for a given purpose? But clearly, if we want computers to
answer such questions, then we need adequate methods for calculating the
permissions that can reasonably be said to be implied by the policy. This
problem cries out for a principled solution.

In what follows, the phrase “positive permission” will be used as a col-
lective term covering both explicitly declared permission and anything that
must be reckoned permitted by implication from what has thus been ex-
plicitly stated (by some as yet unspecified notion of implicature). I shall
distinguish between two kinds of implied positive permission, namely exemp-
tion and antithetic permission. An action of the former kind may tentatively
be characterised as one which is exempted from a covering prohibition by
a permissive provision. Stated differently, an exemption is an action that
(vagueness intended) falls under a provision that has been declared by law
to constitute an exception to a general prohibition. Consider the following
example from the Norwegian police act § 11 : ’It is forbidden for participants
in any public arrangement to wear a mask, unless participating in a play or
masquerade or the like’ (my emphasis). We may infer that it is permitted
to wear a mask during a public performance of, say, The Tempest, since The
Tempest is indeed a play. In other words, if you are an actor in a public per-
formance of The Tempest then you’re exempted from the prohibition against
wearing a mask in public.

The second form of implied permission, may be called antithetic permis-
sion, since such a permission (the thesis) overrules any prohibition (the an-
tithesis) that is incompatible with it. Unlike exemption, the primary function
of antithetic permissions is not to limit or suspend an existing prohibition,
but rather to prevent one from being passed or practiced in the first place.
As a first attempt, we may say that an action is antithetically permitted
if it cannot be prohibited by a code without making that code contradict
an explicit or implicit permission which is already in force. The paradigm
example—but by no means the only one—is an action protected by consti-
tutional law. Freedom of expression, for instance, is recognized as a human
right under Article 19 of the Universal Declaration of Human Rights and is
recognized in international human rights law in the International Covenant
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on Civil and Political Rights. Although it is not absolute—limitations may
follow the ”harm principle” or the ”offense principle”, for example in the case
of public nudity or ”hate speech”—it is a provision that guarantees certain
rights to people, in the sense that it pre-empts any conceivable prohibition
against those rights. An example that comes to mind is the Jyllands-Posten
incident of 2005, when Muslim organizations filed a complaint with the Dan-
ish police, following the publication of twelve cartoons depicting the Islamic
prophet Mohammad. The investigation was discontinued by the Regional
Prosecutor in Viborg, who concluded that Jyllands-Posten must be reckoned
protected by the freedom of expression. The Director of Public Prosecutors
in Denmark later agreed. One may say, therefore, that the printing of the
cartoons was deemed antithetically permitted by the Danish authorities.

Taking stock, positively permitted is anything that is either i) explicitly
declared to be so, or ii) permitted by implication from something that falls
under (i) and that may (exemption) or may not (antithetic permission) con-
stitute an exception to an already existing general prohibition. Clearly, these
concepts are quite closely related.

The aim of the present paper is to exhibit the logical interrelations be-
tween these variants of positive permission as well as the logical interlations
between postive and negative permission. I shall do so in a way that heeds
the slogan “no logic of norms without attention to the system of which they
form part”, that is, permissive norms will be analysed in the larger context
of a system. Finally, by way of illustration of the utility of the framework, I
give a simple procedure for calculating the positive permission that can be
said to be implicit in a code or policy specification.

2. An informal analysis of permissive structures

An explicitly granted permission would be completely idle were it not
set out against a backdrop of prohibitions, because telling me what I am
permitted to do does not in any way alter the range of choices open to me if
nothing is denied me anyway. The point may be stated in terms of reasons:
When some authority issues a directive, that authority purports to give its
subjects a reason to act accordingly. The extent to which it actually does so,
one might say, reflects the extent to which its claim to authority is accepted.
Thus the statement “according to institution s, b is mandatory given a”, can,
if the authority of s is presumed unchallenged, be understood as “s has given
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you a reason to do b given a”. An explicit permission, on the other hand, is
a declaration to the effect that you have no (institutional) reason not to do
b given a, or stated differently; it is a legislative act whereby you are released
from an obligation or (by pre-emption) shielded from the imposition of one.
In other words, a permission has no positive regulatory content, meaning that
it does not require that something be done. It only serves to inform you what
you are not under a duty to do, which, of course, is entirely superfluous if
there is no duty. In other words, permission is essentially a negative concept.

This is not a novel insight, of course, but has been stressed time and again
by philosophers of law and logicians alike.5 Nevertheless, a look at the sources
strongly indicates that the implications of this simple observation have not
been fully appreciated. Its significance consists in the fact that the purpose
of a positive permission can only be to restrict the scope and influence of an
already existing prohibition or to pre-empt one that could possibly be passed.
Declaring an action permitted does not add to the requirements imposed on
people by a mandatory norm. From a logical point of view, therefore, positive
permission is essentially derogation: A positive permission suspends, annuls
or obstructs a covering prohibition, thereby generating a corresponding set
of liberties.

In what I shall consider the principal case of positive permission, an
implied positive permission suspends a general prohibition that is already in
force—it is, one might say, an exemption from an operative ban. Consider
the following example from §8 of the Norwegian personal information act:

§8. Personal information may only be processed by the consent
of the registered person, or if processing is statutorily warranted,
or such processing is required in order to

(a) honour an agreement with the registered person, or to per-
form a task that accords with the registered person’s wishes
before such an agreement was entered into,

(b) fulfill a legal obligation on the part of the person responsible
for handling the information,

(c) attend to the registered person’s vital interests,

(d) perform a task in the interest of the general public,

(e) exercise public authority, or

5See for instance [4, 25, 27, 33] and [34]
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(f) attend to a justifiable interest that is not outweighed by the
regard for the registered person’s right to privacy.

As indicated by the word “only” in the opening sentence, accessing someone’s
personal information is in general prohibited. The statute then goes on to list
a set of particular cases for which the prohibition is pronounced null or void.
These cases are in effect exempted from the ban, and therefore constitute
permissions.

Alf Ross, for one, was very clear on this (although, as I shall argue later, he
failed to draw the right conclusions): “Norms of permission have the norma-
tive function only of indicating, within some system, what are the exceptions
from the norms of obligation of the system” [27, p. 120]. The Norwegian
education act § 2-4 provides another example: “Christian teachings and eth-
ical education is an ordinary school subject that shall normally be attended
by all pupils”. The relevant sense of normality is specified by the attendant
clause: “On the basis of written notification from parents, pupils shall be
exempted from attending those parts of the teaching at the individual school
that they on the basis of their own religion or philosophy of life, perceive as
being the practice of another religion or adherence to another philosophy of
life”. Here the mandatory norm is formulated as a duty, but nothing of im-
portance turns on that since requiring attendance is the same as prohibiting
absence.

Taking stock, the principal permissive unit, one might say, is a structure
consisting of a general mandatory norm + specific exemptions. This structure
bears instructive similarities to closed world databases, although the parallel
should not be overburdened: Just as a closed world database operates under
the assumption that what is not currently known to be true is false, a per-
missive structure operates under the presumption that what is not positively
permitted is prohibited. In a closed world database everything is assumed to
be false, as far as that is compatible with the information that is explicitly
stated in the database. If information to the contrary is available, however,
the presumption of falsity yields. A permissive structure relates prohibitions
and exemptions in the same way. In the personal information act, the gen-
eral prohibition against processing personal information works logically like
a closed-world assumption. If a case is not listed as an exemption (or implied
by one), then it isn’t.

The interesting thing to note here is that the presumption of falsity in
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both cases establishes a priority relation between two sources of information;
a default assumption, on the one hand, and explicitly stated information on
the other. If the explicitly given information is incompatible with the de-
fault assumption, then the latter is suspended. This may all seem obvious,
and is certainly well-known from database theory. Nevertheless, this simple
priority structure seems often to be lost out of sight when it comes to the
concept of permission. As it is a conditio sine qua non for an adequate the-
ory, it is important to understand its significance, and to keep it fixed in view.

Now, the same priority relationship in turn holds between negatively per-
mitted actions and mandatory ones. The principle of negative permission,
we recall, states that whatever is not prohibited by a code is permitted ac-
cording to that code. It follows that if an action is prohibited, then it is not
negatively permitted. In other words prohibitions assume priority over neg-
ative permissions, and negative permissions always yield to the greater force
of a mandatory norm. Assembling all the parts of this emerging picture, we
can illustrate a permissive structure as follows:

Universe of actions

Negatively permitted actions

Mandatory actions

Explicitly permitted actions
Closure - Priority -

A few explanatory remarks are perhaps in order: A normative problem may
be regarded as a question concerning the deontic status of actions. In the
majority of cases, the act referred to in a norm is the production of a certain
effect or change. Since there are infinitely many ways to specify the effect
of an action, and infinitely many ways of bringing it about, the universe of
actions must be assumed to be infinite. It follows that no norm rules out all
freedom of choice, although one may say, following Alf Ross, that according
to how precisely the action is specified, the norm is more or less rigorous or
discretionary. Returning to the illustration, the outermost box must thus be
understood as comprising an infinite set of actions. Now, the function of the
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principle of negative permission is to cover this entire set thereby closing the
set of prohibitions and duties, that is, nothing is obligatory if it is not stated
to be so. The set of mandatory actions in turn closes the set of explicitly
permitted ones, that is, nothing is positively permitted if it is not stated
to be so. Hence the relationship between the three classes of actions may
tentatively be illustrated by a three-level nesting of boxes where the closure
of the respective domains goes from the outermost to the innermost box,
whereas the order of priority6 goes in the converse direction.7 We can read
off from this diagram a list of desiderata that any theory of permission should
meet. Such a theory should;

1. Do justice to the negative character of explicit permission by casting
them as exemptions,

2. Recognise the distinctness of explicit from negative permission,

3. Show that a permissive structure is a unit where

(a) Explicitly permitted actions are given priority over mandatory
actions, and

(b) Mandatory actions are given priority over negatively permitted
ones.

I shall use these desiderata as methodological guide-lines in what follows.

3. Input/output logic as a model of normative systems

The reader should be warned that the term “positive permission” is not
quite apt, since positive permissions comprise exemptions and antiththetic
permissions. That is, the set of positive permissions includes cases for which

6This priority ordering, it should be stressed, is only valid within a permissive structure
consisting of a mandatory norm and its particular exemptions. It is certainly not the case
that permissive provisions always take priority over obligating norms. As was remarked
by one of the referees, one may also find that general permissions have exemptions: A law
may e. g. permit public demonstrations in general, but state that they are forbidden if
some of the people carry weapons, say, or damage property.

7Note that antithetic permissions do not figure in this picture. An antithetic permission
will turn out to be either a negative permission or a positive permission and there is no
simple way to represent the determining factor graphically. However, we shall see that
once the structure above has been given an adequate formal expression, a definition of
antithetic permission naturally suggests itself.
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a prohibition is deemed inapplicable—that is, absent. In a sense therefore,
both negative and positive permissions can be negative insofar as they may
arise in the wake of a prohibition. I shall nevertheless continue to talk about
positive permission, since this terminology is already established, but the
reader should bear the negative character of this concept in mind. Its sig-
nificance lies in the fact that positive permissions, as well as negative per-
missions, are systemic or holistic properties. In general there are as many
ways to permit an action as there are ways of blocking or reducing the conse-
quences of a set of mandatory norms. This means that permissions, negative
or positive, are most naturally evaluated against the total output of a code.
A permission is not a separate modality or norm-character, it is a way of
constraining a set of decrees—an operation on a code. Particularly when it
comes to permissions therefore, it seems wise to heed the warning no logic of
norms without attention to a system of which they form part [17, p. 29].

Just as the theoretical paradigm of a theory is a logically closed set of
sentences (i.e. a set of sentences closed under entailment), the theoretical
paradigm of a normative system may be taken to be a set of mandatory
norms that contains all norms it entails (by some as yet unspecified notion of
entailment). This is abstract, true, but will do well for purposes of conceptual
analysis. One of the few such accounts on offer is the theory of input/output
logic as set out in a series of papers by Makinson and van der Torre ([18, 19]
and [20]). Input/output logic is deliberately designed to serve as an abstract
model of normative systems, and I shall take it as my idiom of choice in the
following.

In input/output logic a norm is simply a pair (a, b) correlating an applica-
bility condition, trigger or input a with a duty, optimality condition or output
b. I shall sometimes denote them neutrally as the antecedent and consequent
of a norm respectively. For the purposes of the present paper the base lan-
guage in which the antecedent and consequent of a norm are formulated is
just propositional logic, but this is not a requirement. The base language
needs to be closed under the boolean connectives, but may in addition con-
tain other constructs, such as for instance deontic modalities. Hence, the
b in (a, b) could very well be a normative proposition containing an ought
or must. However, the choice of base language is of no consequence for the
developments that follow, so long as it is a boolean language, so simplicity
favours propositional logic.

A norm in the present paper therefore contains only declarative sentences.
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Accordingly, we think of the antecedent as a description of the states of af-
fairs to which the norm applies, and of the consequent as a description of
a state of affairs that is considered mandatory whenever the antecedent is
satisfied. I shall distinguish between mandatory norms, on the one hand, and
the obligations or requirements they impose on the other. Norms have ap-
plicability conditions, requirements do not. Stated differently, requirements
are the consequents of mandatory norms. In general, I shall use the term
“norm” as a generic term for all relevant pairs (a, b) of formulae figuring in
a system either as mandates or permissions. Thus, there will be permissive
norms as well as mandatory ones.8

To be sure any really adequate representation of norms, requires much
more than this. It needs to represent human, agency, the passage of time,
bearers and counterparties of obligations and so on. Nevertheless, it seems
wise to reserve more complex machinery until we have obtained a clear pic-
ture of the abstract structure, and until we have confirmed that the essential
ideas are sound.

Note that a norm (a, b) in input/output logic is construed as a logically
arbitrary stipulation connecting an input a with an output b—it is logically
arbitrary in the sense that a pair is not a formula, so there is nothing to the
norm (a, b) over and above the fact that some authority requires that b be
done given a. One could see this as an expression of a kind of anti-naturalism,
or conventionalism, wrt. to norms. The validity of a norm (a, b) need not
have any ontological or epistemological status beyond that of being decreed
to hold. As Kelsen says: “Norms posited by human acts of will are arbitrary
in the genuine signication of the word: that is, they can decree any behaviour
whatsoever to be obligatory” [15, p. 4]. Notably, the pair as such has no
logic, the contrapositive of a norm is not necessarily a norm, nor is any pair
of the form (a, a). Hence, norms do not behave as material conditionals,
and they do not satisfy the reflexivity property. This is important insofar as
reflexivity would collapse the distinction between the actual and the ideal,
making every fact optimal according to the norms.

A code of norms in input/output logic is simply a set G of such pairs, from

8There is ample precedence in the litterature for such a generic use of the term “norm”:
Hart [14] for instance speaks of power-conferring norms, whereas Raz [26] and Alchourron
and Bulygin [4] distinguish, as I do, between permissive and mandatory norms
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whence it follows that the explicitly declared requirements, in any situation a
(or alternatively, on any input a) according to G, can be obtained by taking
the image of a under G. The basic notion of normative implicature in turn
allows implicit norms to be derived from the explicit ones—i.e. from the ones
contained in G—e. g. by recognizing that which implies (logically) the trigger
of a norm as itself a trigger of a norm, and that which follows (logically) from
an explicitly declared requirement as itself mandated by a norm. To be more
precise, the basic model of a normative system is an operation out of type
2L2 × 2L 7→ 2L (where L is the language of propositional logic) defined as
follows:

Definition 3.1. out(G, a) = Cn(G(Cn(a))), where Cn(a) is the closure un-
der logical entailment of the formula a.

This definition of the out-operator is, in a broad sense of the term, semantic.
The task of logic is seen as a modest one. It is not to create or determine a
distinguished set of norms, but rather to prepare information before it goes
in as input to such a set G, to unpack output as it emerges and, if needed,
coordinate the two in certain ways. A set G of conditional norms is thus seen
as a transformation device, and the task of logic is to act as its “secretarial
assistant” [18, p. 2].

However, a syntactic representation of the out-operator, can be given
by defining (a, b) ∈ out(G) iff b ∈ out(G, a).9 This projection of the out-
operation onto its left argument, although it can be regarded merely as a
stylistic variant, entails a change of gestalt: We are now construing out as an
operator mapping relations to relations, whence a normative system becomes
a relation that is the value of (the monadic) out for some argument G. As it
turns out, this latter relation, taking G as given, may be represented by the
system that contains the following axioms

Tautology: (t, t) for arbitrary tautologies t

Inclusion: (a, b) for (a, b) ∈ G.

and the following rules of inference;

9Overloading the terminology a bit, I shall refer to both the dyadic and the monadic
out-operator, as simply an out-operator
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Input strengthening (SI ): From (a, b) to (c, b) whenever c ` a.

Output weakening (WO): From (a, b) to (a, c) whenever b ` c.

Conjunctive conclusions (AND): From (a, b) and (a, c) to (a, b∧c)

In other words membership in out(G) corresponds to derivability from G,
where derivability is understood in terms of membership in the least superset
of G that contains (t, t) and is closed under AND, SI and WO. In [20] the
latter set is denoted deriv(G). Observation 1 of the same paper then shows
that out(G) = deriv(G). Note that these operators are closure operators.
That is, they satisfy

Idempotence: out(out(G)) = out(G),

Inclusion: G ⊆ out(G), and

Monotony: out(G) ⊆ out(G′) whenever G ⊆ G′

I shall have occasion to appeal to these later.

By modifying defintion 3.1 in certain ways, other operators can be defined
that satisfy more rules, such as cumulative transitivity, that are certainly in-
teresting candidate principles for reasoning with norms. However, definition
3.1 will do fine for the purposes of this paper (i. e. introducing additional
principles would not change anything), so I refer the reader to the sources.

Henceforth, I shall work with the monadic version of the out operator
(definition 3.1 is still important by way of intuitive motivation, though).
The remainder of this section records a few properties that will be important
for the subsequent developments:

Lemma 3.2 (Easy half of conditionalization). If (a∧c, b→ d) ∈ out(G)
then (c, d) ∈ out(G ∪ {(a, b)}) whenever c ` a.

Proof. Suppose that c ` a and (a ∧ c, b → d) ∈ out(G). Then (c, b →
d) ∈ out(G) by SI. Moreover (c, b) ∈ out(G ∪ {(a, b)}), again by SI, so
(c, d) ∈ out(G ∪ {(a, b)}), by AND.

�
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Lemma 3.3 (Hard half of conditionalization). If (c, d) ∈ out(G∪{(a, b)})
then (a ∧ c, b→ d) ∈ out(G).

Proof. Argument proceeds by induction on the length of a derivation. For
the basis of the induction suppose first that (c, d) = (t, t). Since we have
(t∧a,¬b∨t) = (t∧a, b→ t) ∈ out(G) for any a and b, by input strengthening
and output weakening, we are done. Next, suppose (c, d) ∈ G. Then (c, b→
d) ∈ out(G) by output weakening, and (a ∧ c, b → d) ∈ out(G) by input
strengthening. For the induction step, suppose the property holds for shorter
proofs, and

1. Suppose that (c, d) ∈ out(G∪{(a, b)}) and that (c, d) is derivable from
(g, h) ∈ out(G ∪ {(a, b)}) by SI. Then c ` g and d = h. Since
(g, h) ∈ out(G ∪ {(a, b)}), it follows by the induction hypothesis that
(a ∧ g, b → h) ∈ out(G). Since c ` g we thus have (a ∧ c, b → h) ∈
out(G), by SI, and since d = h we have (a ∧ c, b → d) ∈ out(G) as
desired.

2. Suppose that (c, d) ∈ out(G∪{(a, b)}) and that (c, d) is derivable from
(g, h) ∈ out(G ∪ {(a, b)}) by WO. Then g = c and h ` d. Since
(g, h) ∈ out(G ∪ {(a, b)}), it follows by the induction hypothesis that
(a ∧ g, b → h) ∈ out(G). Since g = c we thus have (a ∧ c, b → h) ∈
out(G), and since h ` d we have (a ∧ c, b → d) ∈ out(G), by WO as
desired.

3. Suppose that (c, d) ∈ out(G∪{(a, b)}) and that (c, d) is derivable from
(g, h), (g′, h′) ∈ out(G ∪ {(a, b)}) by AND. Then c = g = g′ and
d = h∧h′. By the induction hypothesis we have that (a∧g, b→ h), (a∧
g′, b→ h′) ∈ out(G), whence (a∧g∧g′, b→ h∧h′) ∈ out(G), by AND.
Since c = g = g′ and b = h∧ h′, it follows that (a∧ c, b→ d) ∈ out(G),
by SI as desired.

This completes the proof.

�

Thus, we have the following simple corollary:

Corollary 3.4. If c ` a then (c, d) ∈ out(G ∪ {(a, b)}) iff (a ∧ c, b → d) ∈
out(G).
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Given the equality out(G) = deriv(G), this corollary is analogous to the
deduction theorem for classical logic, in the sense that it establishes a link
between derivability and material implication. The differences should be
obvious though; special care is required wrt. applicability conditions.

4. Positive permission according to Makinson and van der Torre

The desiderata listed in section 2 rule out most accounts of permission
on offer. Ross is on the right track when he says “I know of no permissive
legal rule which is not logically an exemption modifying some prohibition”,
but then he continues “and interpretable as the negation of a prohibition”
[27, p. 122]. Of course explicit permission is interpretable as the negation
of an obligation/prohibition insofar as what a permissive provision does is
to render a prohibition null and void for a particular case. It is not thereby
to be identified, as Ross seems to think, with a negative permission, how-
ever, because their respective positions in the priority ordering differ (cmp.
the illustration): Permissive provisions override mandatory norms, and are
therefore to a certain extent protected—in cases of conflict the permission
prevails. Negative permissions, on the other hand, are overridden by manda-
tory norms and are therefore exposed—in cases of conflict the permission
yields. In other words the negation of an obligation is not necessarily the
same as a negative permission as the latter concept is here understood. Ross
takes the negative character of explicit permission as evidence that the two
can be identified, and his account consequently violates desideratum 2.

An inventory and evaluation of existing approaches is outside the scope of
this thesis. One account that is of particular interest here, however, is that of
[21], since it takes the same general point of view as that adopted here—that
is, of treating positive permission holistically as a systemic property. It is
also the first analysis of permission in an input/output idiom, and many of
its central insights have influenced the present paper.10 I shall argue, how-
ever, that it too violates the aforementioned desiderata.

A few notational conventions first: Since we wish to analyse permissions
in the larger context of a system, the proper unit of analysis is a code 〈G, P 〉

10To my knowledge, there is only one other study of permission in input/output logic
so far, and that is [31].
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consisting of a set of explicitly stated mandatory norms G and a set of ex-
plicitly stated permissive norms P . I shall sometimes, for brevity, refer to P
simply as the set of explicit permissions, although, strictly speaking, it is a
set of permissive norms. In the general case where (a, b) is an implied norm,
I shall say that it is a mandatory or a permissive, norm (as the case may
be) according to or in such a code, in which case it means that b is required
or permitted, respectively, by that code whenever a is true. Reformulated
accordingly, Makinson and van der Torres’ concept of negative permission
becomes:

Definition 4.1 (Negative permission). (a, b) is negatively permitted ac-
cording to 〈G, P 〉 iff (a,¬b) /∈ out(G).

The interpretation of this definition is straightforward: G is the set of manda-
tory norms, so b is negatively permitted given a iff it is not prohibited under
the same condition. Note that the set of explicit permissions P does not
come into play. In other words the negatively permitted actions are taken to
be those for which a contrary prohibition is absent, not counting exemptions.
Note also that negative permission so construed trivially satisfies desideratum
3b, that is, it gives priority to prohibitive norms over negatively permitted
actions, since (a,¬b) ∈ out(G∪{(a,¬b)}) for any G, so a negative permission
(a, b) always yields to (a,¬b) were the latter to be added to the code.

As regards the concept of antithetic permission (aka. dynamic positive
permission), Makinson and van der Torre’s definition translates:

Definition 4.2 (Dynamic positive permission). (a, b) is a dynamic pos-
itive permission according to 〈G, P 〉 iff (c,¬d) ∈ out(G∪{(a,¬b)}) for some
positively permitted (c, d) in the same code.

I shall postpone a detailed discussion of this concept until later. Suffice it
to say that I am not going to change it very much, since the general idea
seems sound enough. In Makinson and van der Torres’s words the idea is to
see (a, b) as permitted whenever, given the obligations already present in G,
we can’t forbid b under the condition a, without thereby comitting ourselves
to forbid, under a condition c, something d that is implicit in what has been
explicitly permitted [21, p. 398]. However, a more detailed understanding of
its inner workings obviously requires an understanding of the kind of positive
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permission that is appealed to here, and since I shall plug in a different
concept of positive permission than Makinson and van der Torre, I’d rather
return to it then. The concept they intend is one they call static positive
permission:

Definition 4.3 (Static positive permission). (a, b) is a static positive per-
mission according to 〈G, P 〉 iff (a, b) ∈ out(G∪{(c, d)}) for some (c, d) ∈ P .

As the observant reader will have noticed, definition 4.3 has the effect of
including all norms in out(G) among the static positive permissions, imple-
menting the principle that ought entails may. The idea behind the definition
is to treat (a, b) as permitted iff there is some explicitly given permission
(c, d) such that when we join it with the obligations in G and apply the out-
put operation to the union, then we get (a, b) among the consequences [21,
p. 397]. Static positive permissions are thus treated like weak obligations,
the basic difference being that while obligations proper may be used jointly,
permissions may only be applied one by one. This restriction is intended to
capture the fact that two actions may be permitted under a common con-
dition without being jointly so. For instance, whereas it is usually the case
that drinking is permitted and that driving is permitted according to the
same legal system, it is usually not the case that drinking and driving is
permitted, so permissions cannot in general be conjoined.

Although this restriction to singleton applications of explicit permissions
causes the operation of deriving a static positive permission from one or more
static positive permissions to differ from an ordinary input/output operation
such as out (the reader is referred to the cited paper for details), there is
clearly an intimate relationship between them. Makinson and van der Torre
are able to establish the following connection: Every rule of inference, such
as e.g. AND, that is satisfied by an input/output operation (in this paper
we consider only one; the operation out given by definition 3.1) is an instance
of the general Horn form

(a1, b1), . . . , (an, bn)
HR : c ` d

(g, h)

where c and d may be tautologies (again in the case of AND). Now, for any
given input/output operation, satisfaction of such a Horn rule is reflected
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by a derivation rule for positively permitted norms that takes the form of
a subverse rule: Label each norm (a, b) either (a, b)o or (a, b)p, depending
on whether (a, b) is in out(G) or (a, b) is positively permitted according to
definition 4.3. Then the subverse of a Horn rule is;

(a1, b1)
o, . . . , (an−1, bn−1)

o (an, bn)p

HR↓ : c ` d
(g, h)p

In other words, the subverse rule is obtained by downgrading to permission
status one of the premises and also the conclusion of the corresponding rule
for mandatory norms [op. cit., p. 401]. For instance, the subverse of the
AND rule (call it P -AND for convenience) is:

(a, b)o (a, c)p

P -AND
(a, b ∧ c)p

Thus, even though two distinct permissions need not be jointly permitted,
the conjunction of a positive permission and an obligation always is, since
all input/output operations satisfy AND (this is only meant as an example,
not a criticism). Similarly, positive permission also satisfies

(a, b)p

P -SI c ` a
(c, b)p

which, as I shall argue in the next section, is problematic, as well as

(a, b)p

P -WO b ` c
(a, c)p

Now, return to the example from the Norwegian personal information act:
Let (t,¬p)o stand for “processing of personal information is prohibited” and
(c, p)p for “processing of personal information is permitted if the registered
person gives his consent”. We have the following derivation:

(t,¬p)o

SI
(c,¬p)o (c, p)p

P-AND
(c, p ∧ ¬p)p

P-WO
(c, q)p
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So if the registered person agrees to let anyone access his information, then
everything is permitted! Clearly something goes wrong here, and it is not too
difficult to see what it is. The problem is that the concept of static positive
permission does not establish a relation of priority between a permissive
norm and the general prohibition to which it relates. Positive permissions
and mandatory norms are treated as i/o pairs on the same logical level, so
conflicts are not resolved. A direct application of the definition should make
this even clearer: Put G := {(t,¬p)} and P := {(c, p)}. Then, obviously
(c, p ∧ ¬p) ∈ out(G ∪ {(c, p)}) by SI and AND. In other words (c, p) is
not treated as an exemption, but just as another norm. But according to
desideratum 3b that’s wrong—(c, p) is an exemption and should take priority.
In a footnote Makinson and van der Torre comment: “We do not consider
here the contractions or revisions that one might wish to make to the code
when A [that is, the set of norms] is inconsistent with some z ∈ Z [that is,
the set of permissions]. This is a separate matter, and forms part of the logic
of normative change” [op. cit., p. 415]. But that, I am convinced, is plainly
false. A positive permission is, in the principal case, an exemption, and
exemptions always conflict with a background prohibition—that’s the whole
point. More generally, if a permissive provision does not conflict with a
directive that is or could possibly be passed, then it simply has no purpose—
there is nothing for it to do. In other words, the contractions or revisions
that one might wish to make to the code when a mandatory norm conflicts
with a permissive norm is decidedly not a separate matter. Indeed permissive
norms simply are a kind of specification saying how this is to be done.

5. Permission as derogation

Summing up so far, I have argued that any theory of positive permission
should take the negative character of the concept as fundamental. The pur-
pose of a positive permission can only be to restrict the scope and influence
of an already existing prohibition or to pre-empt one that could possibly be
passed. In the former case the prohibition acts as an exception to a general
prohibition that is already in force. In the latter case it serves as a shield
against prohibitive laws that could conceivably be passed. Notwithstanding
the (as yet unclarified) differences, if either kind of permission is to have a
point, a prohibition must be assumed. Thus, it is the purpose of a positive
permission to act as a constraint on valid or applicable law, and to suspend
a lower-ranking prohibition in cases where that prohibition contradicts the
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permissive provision.

This informal analysis suggests that one way of looking at positive per-
mission is in terms of derogation, where “derogation” is used as a term of
art to denote the elimination (temporary or not) of a norm from a norma-
tive system. In other words, derogation is taken to be the norm-theoretic
analogue of contraction, and the working hypothesis is that the concept of
positive permission can be fruitfully analysed in terms of it.

In classical revision-theory, a contraction on a set is carried out by in-
tersecting maximally non-implying subsets, aka. remainders. That is, to
remove an element a from a theory A one considers subsets of A that are
such that they do not entail a whereas all proper supersets do. The outcome
of the operation is then taken to be that which all selected remainders agree
on. This has proved to be a robust and sustainable mathematical idiom, and
I see no reason to deviate from it. Hence:

Definition 5.1 (Remainders). out(G) ⊥ (a, b) is the set of H such that

1. H ⊆ out(G)

2. (a, b) /∈ out(H), and

3. If H ⊂ I ⊆ G then (a, b) ∈ out(I)

Note that we are taking remainders of the closure out(G) rather than of the
base G, so we are aiming for a version of theory contraction rather than, in
the terminology of [13], base-contraction. Generalising the analysis to base-
contraction should be straightforward, once a skeleton theory is in place.

An important property of remainders, as so defined, is that they are closed
under the out-operation:

Lemma 5.2. If G = out(G) and (a, b) ∈ G. Then H = out(H) for every
subset H of G which is maximally such that (a, b) /∈ out(H).

Proof. By inclusion for out (recall that out is a closure operator), it suffices
to show that (c, d) ∈ H whenever (c, d) ∈ out(H). Suppose therefore that
(c, d) ∈ out(H). By monotony for out we have that out(H) ⊆ out(G),
hence (c, d) ∈ G using the supposition that G = out(G). Now, suppose for
reductio ad absurdum that (c, d) /∈ H. Then by the maximality of H and
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the fact that (c, d) ∈ G we know that (a, b) ∈ out(H ∪ {(c, d)}). But since
(c, d) ∈ out(H), by assumption, we have that out(H) = out(H ∪ {(c, d)}) so
that (a, b) ∈ out(H), contrary to hypothesis.

�

Let, for the time being, the derogation operation be defined by the full
meet of the remainder set:

Definition 5.3. out(G)− (a, b) :=
⋂

(out(G) ⊥ (a, b))11

Full meet contraction on sets of formulae is known to be a bit too heavy-
handed, as it discards an unnecessarily large amount of information. It is
reasonable to expect—one should at least anticipate the possibility—that
some of these problems may carry over into input/output logic. A partial
meet strategy, in the terminology of [3], should be expected to perform bet-
ter.12 For the sake of conceptual clarity, however, I have chosen to keep the
framework as simple as possible, and to leave the appropriate generalisations
for later. It should be said, though, that some of the properties established
in what follows depend on the underlying derogation operator’s being a full
meet operator. These properties would thus have to be enforced by a condi-
tion on the selection function in a partial meet framework. It would be an
interesting exercise to formulate these conditions and to see what they have
to say about the structure of a normative system, but I leave this for future
research. For the time being I shall be content to wave a hand wherever I
find that appropriate and illuminating.

Full meet derogation satisfies the following properties (they should look
familiar to anyone coming from revision theory):

Lemma 5.4. Full meet derogation satisfies;

Closure: out(G)− (a, b) = out(out(G)− (a, b))

11It is important not to confuse the derogation operation out(G)−(a, b) with set-theoretic
difference. I shall use a backslash to denote the latter, as in out(G) \ (a, b).

12A complete characterisation of partial meet derogation on input/output systems can
be found in [29].
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Vacuity: out(G) ⊆ out(G)− (a, b) whenever (a, b) /∈ out(G)

Failure: If ` b then out(G) ⊆ out(G)− (a, b)

Inclusion: out(G)− (a, b) ⊆ out(G)

Success: If (a, b) ∈ out(G) and 0 b then (a, b) /∈ out(G)− (a, b)

Local Recovery: If (a, b) ∈ out(G) then (a, b) ∈ out((out(G) −
(a, c)) ∪ {(a, c)})

Proof. Closure is an easy consequence of lemma 5.2. Vacuity, Inclusion,
Failure and Success all follow immediately from the definitions 5.1 and
5.3. For local recovery, suppose that (a, b) ∈ out(G). We want to show that
(a, b) ∈ out((out(G) − (a, c)) ∪ {(a, c)}). By AND it suffices to show that
(a, c → b) ∈ out(G) − (a, c). Note that (a, c → b) ∈ out(G), by WO, since
(a, b) ∈ out(G). Suppose for reductio ad absurdum that (a, c → b) /∈ H for
some H ∈ out(G) ⊥ (a, c). Then by the maximality of H it follows that
(a, c) ∈ out(H ∪ {(a, c → b)}), so lemma 3.3 yields (a, (c → b) → c) ∈ H.
Now,

(c→ b)→ c ` ¬(c→ b) ∨ c

` ¬(¬c ∨ b) ∨ c

` (c ∧ ¬b) ∨ c

` c

Hence (a, c) ∈ H, by lemma 5.2, and one application of WO, contradicting
H ∈ out(G) ⊥ (a, c).

�

The reader should be aware that the framework of theory contraction
generates certain anomalies when applied to sets of norms. I. e. using theory
contraction, rather than base-contraction has disadvantages when what is
discussed are not theories or beliefs but normative systems. For instance, if
G = (t, a∧ b) and P = (t, b) then (t, a) is still in out(G)− (t, b). This result
is often counterintuitive. For instance, filling in and returning a tax-form is
not an obligation that can be partially satisfied by complying with one of
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the conjuncts only. Rather, these actions are, we may say, deontically inter-
dependent ; there is no point in filling in a tax form if you do not return it,
and there is no point in returning a blank form. Deontic interdependence,
if we agree to call it that, is usually what the law giver of a conjunctive
obligation has in mind. Otherwise the conjuncts would have been separated
before including the norms. Base-contraction (I shall assume familiarity with
the general idea) has the advantage that it respects these differences in the
formulation of a code. In particular, (t, a) will not linger after (t, a ∧ b) has
been removed from the base G.13 I shall leave further exploration of this
point for future research.

Returning now to the concept of positive permission, recall that exemp-
tions are essentially exemptions from something. I. e. an exemption always
relates to a background prohibition. Antithetic permissions, on the other
hand, for instance constitutional guarantees, are derived from explicit per-
missions that do not relate to any prohibition in particular, but are meant to
reject in advance certain prohibitions that could conceivably be passed. In
both cases though, the permission acts as a constraint on valid or applicable
law, so it is the mechanism of constraining that plays center stage. The basic
difference is that in the case of antithetic permissions, no prohibition contra-
dicting the pronounced permission yet exists, so the constraint is idle. Hence
it seems natural to treat exemption as the principal concept of positive per-
mission, and to proceed from there to an analysis of antithetic permission.
A first shot at a definition might be:

Definition 5.5 (Exemptions I). (a, b) is an exemption according to a code
〈G, P 〉 iff (a,¬b) ∈ out(G) \ out(G)− (c,¬d) for some (c, d) ∈ P .

I shall say that (a, b) is an exemption by the explicit permission (c, d). Ex-
emptions are thus cast as cut-backs on the code required to respect the
explicit permissions in P . More precisely (a, b) is an exemption if the code
contains a prohibition that regulates the state of affairs a by prohibiting b,
and (a,¬b) is such that, unless it is removed, the code will contradict an
explicit permission in P .

13This was pointed out to me by one of the referees. A related point is discussed in [29,
chap. 5].
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Note that according to definition 5.5 if there is some (a, b) such that (a, b)
is an exemption by (c, d) then (c, d) is an exemption by itself:

Lemma 5.6. If (a,¬b) ∈ out(G) \ out(G)− (c,¬d) for some (c, d) ∈ P then
(c,¬d) ∈ out(G) \ out(G)− (c,¬d).

Proof. Since out(G) * out(G) − (c,¬d), it follows that 0 ¬d, by Failure.
Moreover, Vacuity gives us (c,¬d) ∈ out(G), for the same reason. Therefore
(c,¬d) ∈ out(G) \ out(G)− (c,¬d), by Success.

�

Note also, that if (c,¬d) /∈ out(G), i.e. if (c,¬d) is not a norm that is
derivable in the system, then out(G)− (c,¬d) will be identical to out(G), by
Vacuity and Inclusion so out(G)\out(G)−(c,¬d) will be empty. Therefore,
unless an explicit permission is in direct conflict with a norm derivable in the
code, the permission will not be an exemption from any norm in the code.
This is intentional and indicates (by exclusion) the kind of case in which an
explicit permission will be considered as a preemption, or a protection or a
shield, against effective direct or indirect introduction of a certain potential
mandatory (i.e. prohibitive) norm, rather than as an exemption from an
existing norm.14

To see how definition 5.5 behaves, consider the following example:

Example 5.7. Put G := {(t,¬p)} and P := {(c, p)}. Think of these norms
as a general prohibition against processing personal information and as an
exception for express consent respectively. We have (c,¬p) ∈ out(G) by
input strengthening. By success for full meet derogation, however, (c,¬p) /∈
out(G)− (c,¬p), so (c, p) constitutes an exemption.

Exemptions, so defined, satisfy several interesting properties, for instance;

Lemma 5.8 (Output weakening). If (a, b) is an exemption in 〈G, P 〉 then
so is (a, c), given that (a,¬c) ∈ out(G) and b ` c.

14I owe this particular formulation to one of the referees.
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Proof. Suppose that (a, b) is an exemption in 〈G, P 〉 and that b ` c. From
the former assumption we have that (a,¬b) ∈ out(G) \ out(G) − (g,¬h) for
some (g, h) ∈ P . Assume now that (a,¬c) ∈ out(G). It suffices to show
that (a,¬c) /∈ out(G) − (g,¬h). Suppose for reductio ad absurdum that
(a,¬c) ∈ out(G) − (g,¬h). We have b ` c by assumption, whence ¬c ` ¬b
by contraposition. It follows that (a,¬b) ∈ out(G)− (g,¬h), by Closure for
full meet derogation and one application of WO. But by assumption (a, b)
is an exemption, so (a,¬b) /∈ out(G)− (g,¬h)—a contradiction.

�

Thus if it is permitted to process some item of personal information on a
given condition, and we assume that processing entails access, then accessing
the information is allowed. An easy consequence of output weakening is the
following property of disjunctive exemption:

Lemma 5.9 (Disjunctive exemption). If (a, b) and (a, c) are exemptions
according to 〈G, P 〉 then (a, b∨c) is an exemption according to the same code.

Proof. Suppose (a, b) and (a, c) are both exemptions according to 〈G, P 〉.
Then (a,¬b), (a,¬c) ∈ out(G), so (a,¬b ∧ ¬c) ∈ out(G), by AND, and
(a,¬(b ∨ c)) by WO. Thus, since b ` b ∨ c, it follows by lemma 5.8 that
(a, b ∨ c) is an exemption in 〈G, P 〉.

�

Both these properties seem relatively intuitive and desirable. Much more
problematic is the property of input weakening:

Lemma 5.10 (Input weakening). If (a, b) is an exemption according to
〈G, P 〉 then (c, b) is an exemption according to the same code whenever
(c,¬b) ∈ out(G) and a ` c.

Proof. Suppose (a, b) is an exemption in 〈G, P 〉. Then (a,¬b) ∈ out(G) \
out(G)− (g,¬h) for some (g, h) ∈ P . Suppose further that (c,¬b) ∈ out(G)
and that a ` c. It suffices to show that (c,¬b) /∈ out(G)− (g,¬h). Suppose
to the contrary that (c,¬b) ∈ out(G) − (g,¬h). Then by Closure for full
meet derogation we have that (a,¬b) ∈ out(G)− (g,¬h), by one application
of SI. This contradicts the assumption that (a, b) is an exemption, so the
proof is complete.
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The property of input weakening for conditional permission is briefly dis-
cussed in [17], where the following example is offered by way of motivation:
“Given that it is permitted to mow the lawn on Sunday between 10h00 and
12h00, I may conclude that it is permitted to do so on Sunday, but I may not
conclude from the latter that it is permitted to mow on Sunday afternoon”.
However, a look at more realistic examples quickly reveals that this is not a
valid pattern of reasoning. Consider this time the personal information act
§9, c:

§9 Sensitive personal information may only be processed if one of
the conditions in §8 is met and

c) processing is required in order to attend to the registered
persons’ vital interests, and the registered person is unable
to consent

If we accept input weakening, then we may conclude that processing is per-
mitted if the registered person is simply unable to consent. Thus, shooting
him is one way of obtaining permission to access his information. The fol-
lowing regimented example brings out the problem more clearly:

Example 5.11. Put G := {(t,¬p)} and P := {(c, p)}, where we interpret
the norms as in preceding examples. Then (c, p) is an exemption according
to 〈G, P 〉, and, by input weakening, so is (t, p). Hence, given that processing
of personal information is permitted on some condition, then it is permitted
unconditionally.

Imagine an information infrastructure such as that envisioned by Weitzner
et al., where the system assumes responsibility for answering queries such as
“am I allowed to use this information?”. Obviously, input weakening would
constitute a serious systemic anomaly, as it would make the system answer
’yes’ in all circumstances, given that any condition allows the information to
be used. I conclude that input weakening is not a desirable property. Nor is
input strengthening, actually, since a permission may be toggled on and off
under increasingly specific circumstances. Norwegian intellectual property
law (LOV-2006-12-22-103) provides one example. §2 states a general restric-
tion on the production of copies: “Intellectual property gives exclusive rights
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to produce copies, temporary or permanent”. An exception is recognised
in §11a: “If a temporary representation of a work is essential to a process
whose sole purpose is to facilitate the legitimate use of the work then §2
is suspended”. The statute then goes on to state an exception in turn to
this exception: “this provision does not apply to computer programs and
databases”. Hence, a permission to produce a copy of a piece of intellectual
property may be toggled off again when more is known about the circum-
stances and the nature of the work.15 This strongly suggests that permissive
norms should be regarded as classical with respect to the antecedent, in the
terminology of [11]. The definition should therefore be modified as follows:

Definition 5.12 (Exemptions II). (a, b) is an exemption according to the
code 〈G, P 〉 iff (a,¬b) ∈ out(G) \ out(G) − (c,¬d) for some (c, d) ∈ P such
that c ≡ a.

This definition satisfies neither input weakening nor strengthening. I’ll show
the failure of the former only:

Example 5.13. Let G := {(t,¬p)} and P := {(c, p)}. Then (c,¬p) ∈
out(G) by SI, but (c,¬p) /∈ out(G) − (c,¬p) by the property of success for
derogation, so (c, p) is an exemption according to 〈G, P 〉. However, there is
no (t, q) ∈ P for any q, so the condition (t,¬p) ∈ out(G) \ out(G) − (t, q)
fails for all q. Hence (t, p) is not an exemption according to 〈G, P 〉 so input
weakening fails.

I shall take 5.12 as my “official” definition. As can be seen, conditional
permission, although classical with respect to the antecedent, is neverthe-
less normal with respect to the consequent, and thus still satisfies output
weakening and disjunctive exemption. Moreover, it should be clear that the
definition conforms to our desiderata. The permission that acts as a con-
straint is itself immune to derogation, and therefore always assumes priority

15A natural extension to the system presented here would thus be to allow exceptions
to permissive norms as well. One idea that suggests itself is to give the notion of a code a
recursive structure. For instance: A code is either a pair 〈G, P 〉 or it is pair 〈G, C〉 where
G is a set of mandatory norms, and C is a code. All references to P in the definitions
presented in this section would then be replaced by C. I have not yet looked into this
though, and do not really know if it would work.
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over prohibitions.

Finally, it can be shown that the set of exemptions is closed under ex-
emptions, i.e. that 5.12 is a definitional schema that can be used iteratively
in the following sense:16

Lemma 5.14. (a, b) is an exemption in 〈G, P 〉 whenever (a,¬b) ∈ out(G) \
out(G)− (c,¬d) for some exemption (c, d) in 〈G, P 〉 with a ≡ c.

Proof. Suppose (a,¬b) ∈ out(G)\ out(G)− (c,¬d) for a ≡ c. Then, there is
an F ∈ out(G) ⊥ (c,¬d) such that (a,¬b) /∈ F . It follows, by the maximality
of F that (c,¬d) ∈ out(F∪{(a,¬b)}), whence (a∧c,¬b→ ¬d) ∈ F ⊆ out(G),
by lemma 3.3. Now, (c, d) is an exemption in 〈G, P 〉, by assumption, so there
is a pair (g, h) ∈ P with g ≡ c such that (c,¬d) /∈ out(G) \ out(G)− (g,¬h).
Hence (c∧g,¬d→ ¬h) ∈ out(G) by reasoning similar to that in the previous
step. We therefore have the following derivation:

(a ∧ c,¬b→ ¬d)
SI

(a,¬b→ ¬d)

(c ∧ g,¬d→ ¬h)
SI

(a,¬d→ ¬h)
AND

(a, (¬b→ ¬d) ∧ (¬d→ ¬h))
WO

(a,¬b→ ¬h)

So (a,¬b → ¬h) ∈ out(G)), by the equality out(G) = deriv(G). Now,
to prove that (a,¬b) ∈ out(G) \ out(G) − (g,¬h), it suffices to find an
H ∈ out(G) ⊥ (g,¬h) such that (a,¬b) /∈ H. Consider the set H− :=
{(a,¬b→ ¬h)}. Clearly (g,¬h) /∈ out(H−), unless ` ¬b which, by Success,
must be false since (a,¬b) /∈ out(G)− (c,¬d). Hence H− can be extended to
a maximal subset H of out(G) such that (g,¬h) /∈ H. Moreover (a,¬b) /∈ H,
by AND, since (a,¬b→ ¬h) is. Therefore (a,¬b) /∈ out(G)− (g,¬h), since
the derogation operator is full meet. It follows that (a, b) is an exemption in
〈G, P 〉 as desired.

�

16This possibility was suggested by one of the referees.
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Now, having the set of exemptions under reasonable control we are now
in position to say something substantial about antithetic permission. Recall
that the idea, as put in words by Makinson and van der Torre (who in
turn give Alchourron credit for it), is to see (a, b) as permitted whenever,
given the mandatory norms in G, we can’t forbid b under the condition a
without thereby comitting ourselves to forbid, under a condition c that could
possibly be fulfilled, something d which is implicit in what has been explicitly
permitted. Now, that which a code explicitly pronounces to be permitted
are just the elements in P , and exemptions are permissions implicit in P .
Hence antithetic permission becomes;

Definition 5.15 (Antithetic permission). (a, b) is antithetically permit-
ted according to 〈G, P 〉 iff (c,¬d) ∈ out(G ∪ {(a,¬b)}) where (c, d) is an
exemption or an explicit permission according to the same code, and a ≡ c.

This is a straightforward translation, with minor modifications, of the def-
inition of dynamic positive permission from [21], the differences being two:
Firstly, we are now plugging in a different concept of positive permission.
Secondly, in order to avoid the problems that ensue from input weakening,
antithetic permissions are required to be classical only with respect to the
antecedent. The next theorem gives another representation that will come
in handy later:

Theorem 5.16. (a, b) is antithetically permitted in 〈G, P 〉 iff (a,¬b→ ¬d) ∈
out(G) where (c, d) is an exemption or an explicit permission in the same code
such that a ≡ c.

Proof. From left to right, suppose (a, b) is antithetically permitted according
to 〈G, P 〉. Then (c,¬d) ∈ out(G ∪ {(a,¬b)}) for some exemption or explicit
permission (c, d). It follows by lemma 3.3 that (a ∧ c,¬b → ¬d) ∈ out(G),
whence, since a ≡ c, (a,¬b → ¬d) ∈ out(G), by SI. For the converse
direction, suppose (a,¬b→ ¬d) ∈ out(G), and that (c, d) is such that a ≡ c.
Then by AND and SI we have (c,¬d) ∈ out(G∪ {(a,¬b)}), so we are done.

�

The next example gives a simple illustration of the behaviour of this concept:
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Example 5.17. Put G := {(a, d → b)} and P := {(a, d)}. Then (a, b)
is antithetically permitted since (a,¬b → ¬d) ∈ out(G) and (a, d) ∈ P .
However, (a, b) is not an exemption, since (a,¬b) /∈ out(G).

As the example shows, antithetic permission does not coincide with exemp-
tion, but there is obviously a quite close relationship between them. The
next theorem brings this relationship out clearly:

Theorem 5.18. If (a, b) is antithetically permitted in 〈G, P 〉, then it is an
exemption in 〈G ∪ {(a,¬b)}, P 〉.

Proof. Suppose (a, b) is antithetically permitted in 〈G, P 〉. Then, by theo-
rem 5.16, (a,¬b→ ¬d) ∈ out(G) for a permissive norm (c, d) in 〈G, P 〉 with
a ≡ c. By the definition of antithetic permission (c, d) is either an exemption
or an explicit permission. The argument thus splits into cases:

If (c, d) is an exemption in 〈G, P 〉, then we have that (c,¬d) ∈ out(G) \
out(G)− (g,¬h) for some (g, h) ∈ P with g ≡ c. It follows that (c,¬d) /∈ H
for some H ∈ out(G) ⊥ (g,¬h), whence (g,¬h) ∈ out(H ∪ {(c,¬d)}) by the
maximality of H. Therefore (c ∧ g,¬d → ¬h) ∈ H ⊆ out(G), by lemma 3.3
and lemma 5.2, whence (a,¬d → ¬h) ∈ H ⊆ out(G), by SI and a ≡ c ≡ g.
Since both (a,¬b→ ¬d), (a,¬d→ ¬h) ∈ out(G), therefore, we have (a,¬b→
¬h) ∈ out(G) by AND and WO. Now, to show that (a, b) is an exemption
in 〈G∪{(a,¬b)}, P 〉 it suffices to show that (a,¬b) ∈ out(G∪{(a,¬b)}) and
that (a,¬b) /∈ out(G ∪ {(a,¬b)})− (g,¬h). The former follows immediately
from the fact that out is a closure operator. For the latter it suffices to
find an H ∈ out(G ∪ {(a,¬b)}) ⊥ (g,¬h) such that (a,¬b) /∈ H. But the
existence of such a set follows immediately from the fact that (a,¬b→ ¬h) ∈
out(G ∪ {(a,¬b)}), for we may expand {(a,¬b→ ¬h)} to a maximal subset
H of out(G ∪ {(a,¬b)}) such that (g,¬h) /∈ H, in which case (a,¬b) /∈ H,
by construction of H, AND and g ≡ a.

Similarly, when (c, d) is an explicit permission we need to show that
(a, b) ∈ out(G∪{(a,¬b)}) and that (a,¬b) /∈ out(G∪{(a,¬b)})−(c,¬d), the
former of which is immediate. The argument for the latter is essentially a
rerun of the argument for the existence of an appropriate maximal subset of
out(G∪{(a,¬b)}) from above: We have (a,¬b→ ¬d) ∈ out(G∪{(a,¬b)}) by
lemma 5.16 and monotony for out. By reasoning similar to that above, the set
{(a,¬b→ ¬d)} can be extended to a maximal subset F of out(G∪{(a,¬b)})
such that (c,¬d) /∈ F . Clearly (a,¬b) is not in F so we are done.
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Despite its simple appearance, this is a non-trivial property that depends
crucially on the underlying derogation operation being a full meet operation,
for we need to establish the existence of a remainder in which the added
element (a,¬b) is not included. Were we to take a partial meet operation as
basic then the property would not in general hold. An interesting exercise
would then be to investigate the conditions under which it would be valid.
Although I shall leave that question for future research, it is clear that an
answer would consist in formulating the conditions under which the added
element (a,¬b) is to be given a lower priority than certain elements already
present in the code, thus seeing to it that a remainder not having (a,¬b)
would be chosen by the selection function. Clearly therefore, the property
above would say something substantial about the priority structure of the
given code. I shall leave all this aside for the moment. Let me just say that I
regard it as a virtue of the theory developed here, that such questions become
clearly visible.

The converse of theorem 5.18 holds on any derogation operation:

Theorem 5.19. If (a, b) is an exemption in 〈G ∪ {(a,¬b)}, P 〉 then it is
antithetically permitted in 〈G, P 〉.

Proof. (a, b) is an exemption in 〈G ∪ {(a,¬b)}, P 〉 if (a,¬b) ∈ out(G ∪
{(a,¬b)}) \ out(G ∪ {(a,¬b)})− (a,¬d) for some (a, d) ∈ P . It thus suffices
to show that (a,¬b→ ¬d) ∈ out(G) by theorem 5.16. By Local Recovery
we have (a,¬d) ∈ out((out(G)− (a,¬b))∪{(a,¬b)}), whence (a,¬b→ ¬d) ∈
out(G)− (a,¬b) ⊆ out(G) by Inclusion for full meet derogation.

�

Antithetic permissions are thus precisely the pairs that would constitute
exemptions if the code were expanded with a covering prohibition. This
agrees well with intuition I think, and also finds support in the sources:

This is what happens with constitutional rights and guarantees:
the constitution rejects in advance certain norm-contents (that
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would affect basic rights), preventing the legislature from pro-
mulgating this norm-content, for if the legislature promulgates
such a norm-content, it can be declared unconstitutional by the
courts and will not be added to the system [5, pp. 397–398].

Theorems 5.18 and 5.19 spell out, with welcome precision, what it means for
a permissive provision, such as e.g. a constitutional guarantee, to reject a
norm in advance, as Alchourron and Bulygin puts it. Another way to say
the same is that a permissive provision in a merely antithetic use represents
a commitment not to allow a code to grow in certain specified ways. Indeed,
the ’checked growth’-perspective is an equivalent way of looking at things:

Theorem 5.20. (a, b) is antithetically permitted in 〈G, P 〉 iff (a,¬b) /∈
out(G ∪ {(a,¬b)})− (c,¬d) for some (c, d) ∈ P with a ≡ c.

Proof. For the left-to-right direction, if (a, b) is antithetically permitted ac-
cording to 〈G, P 〉, then it is an exemption in 〈G ∪ {(a,¬b)}, P 〉, by lemma
5.18, whence (a,¬b) /∈ out(G ∪ {(a,¬b)})− (c,¬d) for some (c, d) ∈ P with
a ≡ c, as desired. For the converse direction suppose (a,¬b) /∈ out(G ∪
{(a,¬b)}) − (c,¬d) for some (c, d) ∈ P with c ≡ d. If (c,¬d) /∈ out(G ∪
{(a,¬b)}), then out(G∪{(a,¬b)})−(c,¬d) = out(G∪{(a,¬b)}), by Vacuity
for full meet derogation, contradicting (a,¬b) /∈ out(G∪{(a,¬b)})− (c,¬d).
Hence (c,¬d) ∈ out(G ∪ {(a,¬b)}), so (a,¬b → ¬d) ∈ out(G) by lemma
3.3 and SI and the assumption that a ≡ c. Hence (a, b) is antithetically
permitted according to 〈G, P 〉, which is what we wished to show.

�

As regards entailment relationships, example 5.17 shows that antithetic
permissions need not be exemptions, but the converse direction holds:

Theorem 5.21. Exemptions are antithetically permitted

Proof. Suppose (a,¬b) ∈ out(G) \ out(G)− (a,¬d) for some (c, d) ∈ P with
a ≡ c. Then there is an H ∈ out(G) ⊥ (c,¬d) such that (a,¬b) /∈ H.
Since (a,¬b) ∈ out(G), it follows by the maximality of H that (c,¬d) ∈
out(H ∪ {(a,¬b)}), whence (a,¬b → ¬d) ∈ H ⊆ out(G), by lemma 3.3, SI
and the assumption that a ≡ c. Therefore, (a, b) is antithetically permitted
by theorem 5.16.
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Similarly:

Theorem 5.22. Explicit permissions are antithetically permitted

Proof. Suppose (c, d) ∈ P . Since (a,¬d → ¬d) ∈ out(G), for any G, it
follows that (c, d) is an antithetic permission in 〈G, P 〉 by theorem 5.16.

�

Moreover, exemptions are precisely the antithetically permitted norms whose
local negation—where (a,¬b) is the local negation of (a, b)—is in the given
code out(G):

Theorem 5.23. If (a, b) is antithetically permitted according to 〈G, P 〉 and
(a,¬b) ∈ out(G) then (a, b) is an exemption in 〈G, P 〉

Proof. Since (a, b) is antithetically permitted in 〈G, P 〉 it is an exemption
in 〈G∪{(a,¬b)}, P 〉 by theorem 5.18. Since by assumption (a,¬b) ∈ out(G)
we have 〈G ∪ {(a,¬b)}, P 〉 = 〈G, P 〉, so we are done.

�

These theorems taken together go a long way, I think, towards clarifying
the exact relationship between explicit permission (items in P ), exemptions
and antithetic permission (the three species of positive permission). To com-
plete the picture we need to bring negative permission back into it. Note
first that the set of negatively permitted actions and the set of exemptions
are disjoint:

Theorem 5.24. If (a, b) is negatively permitted then it is not an exemption.

Proof. If (a, b) is negatively permitted, then (a,¬b) /∈ out(G), so (a, b) is
not an exemption.
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This is as it should be, since it allows us to distinguish sharply between, on
the one hand, those actions that a legislature or other norm-issuing authority
can prohibit at its discretion, and, on the other hand, those actions that may
require the prior retraction of an intentionally granted permission. I. e. the
disjointness of these two classes of action is necessary to preserve the priority
ordering as described in section 2. Antithetic permissions, on the other hand,
can clearly be negatively permitted, since their local negations need not be
derivable from the code:

Theorem 5.25. If (a, b) is antithetically permitted according to 〈G, P 〉, but
not an exemption according to the same code, then it is negatively permitted.

Proof. Suppose (a, b) is antithetically permitted in 〈G, P 〉, but not an ex-
emption. We need to establish that (a,¬b) /∈ out(G). Theorem 5.18 tells us
that (a, b) is an exemption in 〈G ∪ {(a,¬b)}, P 〉. Thus if (a,¬b) ∈ out(G)
then 〈G∪{(a,¬b)}, P 〉 = 〈G, P 〉, so (a, b) is an exemption in 〈G, P 〉 contrary
to assumption.

�

Before bringing this paper to a close we should return to the problem of
how to compute the permissions that can be said to be implicit in a code or
policy specification. This problem was briefly discussed in the introduction,
and we are now in position to give it a tentative solution: By definition, (a, b)
is antithetically permitted in 〈G, P 〉 only if (a,¬b) contradicts an explicit
permission or an exemption in the same code. It is possible to eliminate
the latter disjunct and to show that (a,¬b) must ultimately contradict an
explicit permission in P . The proof relies on the representation of antithetic
permission given by theorem 5.16:

Theorem 5.26. If (a,¬b → ¬d) ∈ out(G) for some exemption (c, d) with
a ≡ c, then (a,¬b → ¬h) ∈ out(G) for some explicit permission (g, h) ∈ P
with g ≡ a.

Proof. Suppose (c, d) is an exemption according to 〈G, P 〉 and that c ≡ a.
Then (c,¬d) ∈ out(G) \ out(G)− (g,¬h) for some (g, h) ∈ P with g ≡ c. It
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follows that (c,¬d) /∈ H for some H ∈ out(G) ⊥ (g,¬h), whence (g,¬h) ∈
out(H ∪ {(c,¬d)}) by the maximality of H so (a,¬d→ ¬h) ∈ H ⊆ out(G),
by lemma 3.3, SI and the assumption that a ≡ c ≡ g. Hence, since by
assumption (a,¬b → ¬d) ∈ out(G), we have (a,¬b → ¬h) ∈ out(G) by
AND and WO. Since (g, h) ∈ P and g ≡ a therefore, the proof is complete.

�

Taken together with theorem 5.21 and 5.23 this gives us a way to represent
exemptions that does not appeal to derogation at all:

Theorem 5.27. (a, b) is an exemption according to 〈G, P 〉 iff (a,¬b) ∈
out(G) and (a,¬b→ ¬d) ∈ out(G) for some (c, d) ∈ P with c ≡ a.

Proof. For the left-to-right direction, suppose (a, b) is an exemption in
〈G, P 〉. Then (a,¬b) ∈ out(G). By theorem 5.21, (a, b) is antithetically
permitted according to the same code. I. e. (a,¬b→ ¬c) ∈ out(G) for some
exemption or explicit permission (a, c). Hence, by lemma 5.26, it follows
that (a,¬b → d) ∈ out(G) for some (a, d) ∈ P , as desired. For the converse
direction, suppose (a,¬b) ∈ out(G) and (a,¬b → ¬d) ∈ out(G) for some
(a, d) ∈ P . Then (a, b) is antithetically permitted by theorem 5.16. Since
(a,¬b) ∈ out(G), it follows by lemma 5.23, that (a, b) is an exemption in
〈G, P 〉, so we are done.

�

This in turn yields a uniform procedure for calculating exemptions and an-
tithetic permissions (explicit permission being immediately given by P , of
course). To check whether (a, b) is an exemption according to 〈G, P 〉 do:

If (a, -b) in out(G):

For c in P(a):

If (a, -b -> -c) in out(G):

return 1

return 0

else:

return 0
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To check whether (a, b) is antithetically permitted, on the other hand, it suf-
fices, by theorem 5.18 and 5.19, to check whether it is exempted if added to
the code G. Of course this means that the initial membership test is super-
fluous, so the procedure is simply;

For c in P(a):

If (a, -b -> -c) in out(G U (a, -b)):

return 1

return 0

6. Summary and conclusion

I have proposed a new analysis of the concept of positive permission,
understood as that which is implied by a set of explicitly pronounced per-
missions. Positive permission has been analysed as constraints on the gener-
ation of output from a code. As such they naturally assume priority over the
mandatory norms they override, which in turn take priority over negatively
permitted actions. This is all in conformity with the desiderata presented in
section 2.

The analysis shows that there is a close relationship between explicit per-
mission and exemptions. Exemptions are antitehtically permitted, and an-
tithetic permissions are exemptions in a larger code. Moreover, exemptions
are characterisable as the set of antithetic permissions whose local negations
are included in the code. As regards the concept of negative permission, it
is more loosely coupled with the other two than most other accounts will
have it. Antithetic permissions are negative permissions if they are not also
exemptions. But exemptions, on the other hand, are never negative permis-
sions, that is, the class of negative permissions and the class of exemptions
are disjoint. I have argued that this is as it should be, since it allows us to
distinguish between, on the one hand, those actions that a legislature can pro-
hibit at its discretion, and those that are protected by a permissive provision,
on the other. In other words, the disjointness of these two classes of actions
reflects their relative positions in the priority ordering of normative concepts.
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Let EX(G, P ) be the set of exemptions in 〈G, P 〉, and let ANT (G, P ) and
NEG(G) be the set of antithetic permissions and negative permissions re-
spectively. For any set of norms S, let S ′ := {(a,¬b) : (a, b) ∈ S}. The result
of the preceding investigations may then be summarised as follows:

1. EX(G, P )′ ⊆ out(G)

2. ANT (G, P ) \ EX(G, P ) ⊆ NEG(G)

3. EX(G, P ) ⊆ ANT (G, P )

4. P ⊆ ANT (G, P ) for any G.

5. ANT (G, P ) ∩ out(G)′ ⊆ EX(G, P )

6. EX(G, P ) ∩NEG(G, P ) = ∅
7. ANT (G, P ) ⊆ EX(G ∪ ANT (G, P ), P )

1 follows immediately from the definition of exemptions, 2 is theorem 5.25, 3
is theorem 5.22, 4 is theorem 5.21, 5 is theorem 5.23, 6 is theorem 5.24 and
7 is theorem 5.18.

None of the results I have presented are difficult, and the theory that emerges
is simple. I consider this one of its principal virtues.
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