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Abstract. We show that a recently developed theory of positive per-
mission based on the notion of derogation is hampered by a triviality
result that indicates a problem with the underlying full-meet contraction
operation. We suggest a solution that presupposes a particular normal
form for codes of norms, adapted from the theory of relevance through
propositional letter sharing. We then establish a correspondence between
contractions on sets of norms in input/output logic (derogations), and
AGM-style contractions on sets of formulae, and use it as a bridge to
migrate results on propositional relevance from the latter to the former
idiom. Changing the concept accordingly we show that positive permis-
sion now incorporates a relevance requirement that wards off triviality.
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1 Introduction

In computer science, permission is perhaps the most ubiquitous of the so-called
deontic concepts—although it often appears under different names such as priv-
ilege or access rights. A need for a rigorous definition of the concept arises for
instance in access control logic [1] and information accountability [20]. Permis-
sion is a very subtle and many-faceted concept. In fact it denotes a rag bag of
distinct but closely related action concepts that should be analysed in intercon-
nection.

A unifying theory was proposed in [19], a prominent feature of which is that
it shows how a single code of norms generates different categories of permission
when it is manipulated in different ways that correspond roughly to natural op-
erations on e.g. legal corpora. The operation of derogation in particular turns out
to have considerable explanatory force, as all concepts of positive permission, so
called, are analysable as ways of overriding a prohibitive norm. The resulting
theory defines and interrelates the concept of explicit permission and the con-
cept of negative permission, as well as two kinds of implicit positive permission,
namely exemption and antithetic permission.

In this paper we shall focus on the latter two. We shall refer to both by
the generic term positive permission when finer distinctions do not matter. As
a tentative characterisation we may say that an exemption is an action that is
implicitly recognized by the promulgating authority as constituting an exception



to a general prohibition.1 Consider the following example from the Norwegian
police act § 11 : ‘It is forbidden for participants in any public arrangement to wear
a mask, unless participating in a play or masquerade or the like’ (my emphasis).
We may infer that it is permitted to wear a mask during a public performance of,
say, The Tempest, since The Tempest is indeed a play. This regulation could have
been worded differently of course, but it seems clear that the intent in any case
is to make participation in public performances an exception to the prohibition.

The second form of implied positive permission may be called antithetic per-
mission, since the idea is to see a norm (a, b) as permitted by a code G whenever,
given the obligations already present in G, we can’t forbid b under the condi-
tion a without thereby contradicting something d that is implicit in what has
been explicitly permitted [13, p. 398]. Unlike exemption, the primary function
of antithetic permissions is not to suspend an existing prohibition, but rather to
prevent one from being passed in the first place. The paradigm example—but by
no means the only one—is an action protected by constitutional law, for instance
freedom of expression. We shall stick to this general idea, although the definition
will differ slightly from that of [13, p. 398].

At the heart of the present paper is a triviality result that shows the following:
According to the theory set out in [19], if an action described by b constitutes
an exemption in circumstances described by a, according to a code G, then
any arbitrarily chosen c is antithetically permitted in the same circumstances
according to the same code G. This anomaly may be diagnosed in more than one
way, but the line pursued in this paper is to consider it a problem of relevance.
We do not view this triviality result as a refutation of the general idea behind
the analysis of antithetic permission in [19]. Rather we view it as an indication
that the well-behavedness of a code under revisions depends also on the form of
that code, not just its content. Consequently, we require of a code that it be on
what we shall call right-splitting form, whereby only those prohibitions that, in
a sense to be made precise, are relevantly related to a permissive norm will be
overridden by it. This take on the problem is inspired by parallell developments
in the field of belief revision, particularly [16] and [15].

The remainder of this paper is organized as follows: Section 2 gives a bare-
bones account of input/output logic, our idiom of choice. Section 3 recalls the
main features of the theory of permission as set out in [19], and proves the
aforementioned triviality result. Section 4 recalls the relationship between rele-
vance through propositional letter-sharing and belief revision. Finally, section 5
establishes a correspondence between contraction on sets of sentences and dero-
gation (as we choose to understand that term), that allows us to migrate the
results from section 4 to input/output logic, and in turn to restore the concept
of antithetic permission to the status of an informative concept.

1 A similar idea was put forth in [4]. See section 7 for a comment on the differences.



2 Preliminaries

A few notational preliminaries first: We use lower case letters a, b, c... to range
over formulae of classical propositional logic, denoted L. The distinguished for-
mula t will stand for an arbitrary tautology, and f for an arbitrary contradiction.
Sets of formulae are denoted by upper case letters from A to D (we shall never
need more), and E(A) denotes the set of elementary letters that occur in A.
Upper case letters from F to I denote sets of norms, that is, binary relations
over subsets of L. When G ⊆ L×L we denote its pre-image under L as G1 and
its image under L as G2. Image-formation will be denoted by ordinary paren-
theses, for instance (G∪H)(a) denotes the image of the relation G∪H under a.
Classical consequence is written with a turnstile ` when considered as a relation
over 2L×L, and as Cn when viewed as an operation on 2L onto itself. To make
the notation less verbose, we follow the convention of writing A ∪ a instead of
A ∪ {a}, and similarly for norms.

We shall stick to the general ideas of [19] and analyse exemption and anti-
thetic permission in terms of derogation. Hence we need to work with codes of
norms. Individual norms, permissive as well as mandatory, will emerge from the
overall behaviour of the system—they cannot be analysed in isolation. This is
true in particular of permissive norms, which, to the extent that they do anything
at all, act as constraints on the generation of mandatary norms and therefore
presuppose the existence of such.

Now, just as the theoretical paradigm of a theory is a logically closed set
of sentences (i.e. a set of sentences closed under entailment), the theoretical
paradigm of a normative system may be taken to be a set of (prima facie)
mandatory norms that contains all norms it entails (by some as yet unspecified
notion of entailment). This is abstract, true, but will do fine for our purposes.
One of the few such accounts on offer is the theory of input/output logic as set
out in a series of papers by Makinson and van der Torre ([12], [11] and [10]).

In input/output logic a (prima facie) norm is simply a pair (a, b) correlating
an applicability condition, trigger or input a with a duty, optimality condition
or output b—these will sometimes be denoted neutrally as the antecedent and
consequent of a norm respectively. The correlation between the antecedent and
consequent is logically arbitrary in the sense that a pair is not a formula, so there
is nothing to the norm (a, b) over and above the fact that some authority requires
that b be done given a. One could see this as an expression of a kind of anti-
naturalism, or conventionalism, wrt. to norms. The validity of a norm (a, b) need
not have any ontological or epistemological status beyond that of being decreed
to hold. A code of norms in input/output logic is simply a set G of such pairs,
from which it follows that the explicitly declared requirements, in any situation a
(or alternatively, on any input a) according to G, can be obtained by taking the
image of a under G. The fundamental notion of normative implicature in turn
allows implicit norms to be derived from the explicit ones—i.e. from the ones
contained in G—e. g. by recognizing that which implies (logically) the trigger
of a norm as itself a trigger of a norm, and that which follows (logically) from
an explicitly declared requirement as itself mandated by a norm. To be more



precise, the fundamental model of a normative system is an operation out of
type 2L×L × L 7→ 2L defined as follows:

Definition 1. out(G, a) = Cn(G(Cn(a)))2

A syntactic representation of this operator, can be obtained by putting (a, b) ∈
out(G) iff b ∈ out(G, a). This projection of the out-operation onto its left argu-
ment, although it can be regarded merely as a stylistic variant, entails a change
of gestalt: We are now construing out as an operator mapping relations to rela-
tions, whence a normative system becomes the relation which is the value of (the
monadic) out for some argument G—it is characterised by the following system
of inference rules [10, Observation 1]):

Definition 2. (a, b) ∈ deriv(G) iff (a, b) is derivable from axioms (t, t) ∪ G by
the rules of inference,

SI
(c, b)
(a, b)

if a ` c AND
(a, b), (a, c)
(a, b ∧ c)

WO
(a, b)
(a, c)

if b ` c

We shall switch between operator notation and turnstile notation for derivability
from G whenever we find it convenient, writing (a, b) ∈ deriv(G) or G `G (a, b)
as we see fit. Note, as we shall have occasion to appeal to these properties later,
that out and deriv, considered as operators on relations, are closure operators.

The remainder of this section records a few properties that we shall be need-
ing later:

Lemma 1. out(G)(a) = out(G, a) = out(G)(Cn(a))

Proof. We prove the first equality only, the seond is essentially similar. Suppose
b ∈ out(G, a). Then (a, b) ∈ out(G), whence, by definition, b ∈ out(G, a). For
the converse inclusion suppose b ∈ out(G, a) = Cn(G(Cn(a))). By compactness
for classical consequence there is a finite set of norms (a1, b1), . . . (an, bn) ∈ G
such that a ` ai for 1 ≤ i ≤ n and

∧n
i=1 bi ` b. Applying SI, AND and WO

repeatedly we have (a, b) ∈ out(G), whence b ∈ out(G, a) as desired.

Next we have:

Lemma 2 (Easy half of conditionalization). If (a∧ c, b→ d) ∈ out(G) and
c ` a then (c, d) ∈ out(G ∪ (a, b)).

Lemma 3 (Hard half of conditionalization). If (c, d) ∈ out(G∪ (a, b)) then
(a ∧ c, b→ d) ∈ out(G).

Lemma 4. If (c, d) ∈ out(F ∪ (a, b)) \ out(F ) then c ` a.

2 This should perhaps rather be called ‘a system of prima facie norms’, since it does
not deal with contrary-to-duty conditionals. It relates, one might say, to normative
reasoning as classical logic does to commonsense reasoning.



The proofs of these lemmata can be found in [19].
The reader should note that the out-operator considered here corresponds

to the one Makinson and van der Torre call simple-minded output [10]. From
the point of view of the philosophy of norms, certainly, it is the least interesting
of the input/output operators. Nevertheless, simple-minded output differs from
the other operators in the input/output family in that it can be viewed as a
most natural and immediate generalization of classical logic. Classical logic is
simply the special case where the set of norms G is the diagonal relation over L.
Hence, simple-minded output is a generalization of classical logic that amounts
to dropping the reflexivity property for material conditionals. This has the effect
of isolating the heads from the bodies of the pairs, so information about the one
cannot be carried backwards or forwards to the other. This, in our opinion, is
an essential feature of (prima facie) norms. Norms are stipulations. Whatever
holds according to a norm holds, one might say, by conventional generation.
Indeed there may be warrant for speaking about non-reflexive logics as on a
par with non-monotonic logics. The latter denotes a broad range of inference
patterns that in some way or other involve assumptions of falsity, which in
turn make arguments sensitive to the absence of information. The former may
in a similar spirit be taken to stand for a family of inference patterns that
share the characteristic that they are mediated by convention. Examples include
permissive norms, mandatory norms, norms of etiquette and constitutive norms
(which should also not be construed as reflexive). Simple-minded output has the
virtue that it isolates this feature in its purest form, and makes it easy to track
the things that change. Of course, the operative assumption is that we will learn
something useful that we can apply to more sophisticated versions later.

3 Permission as derogation

In what may be considered the principal case of positive permission, an implied
positive permission suspends a general prohibition that is already in force, that is,
it constitutes an exception to an operative ban. Consider the following example
from §8 of the Norwegian Personal Information Act:

§8. Personal information may only be processed by the consent of the
registered person, or if processing is statutorily warranted, or such pro-
cessing is required in order to
(a) honour an agreement with the registered person, or to perform a

task that accords with the registered person’s wishes before such an
agreement was entered into,

(b) fulfill a legal obligation on the part of the person responsible for
handling the information,

(c) attend to the registered person’s vital interests,
.......

As indicated by the word ‘only’ in the opening sentence, accessing someone’s
personal information is in general prohibited. The statute then goes on to list a



set of particular cases for which the prohibition is suspended. These cases are in
effect exempted from the ban, and therefore constitute permissions. Thus, one
way of looking at positive permission is in terms of derogation, where ‘deroga-
tion’ is used as a term of art to denote the elimination (temporary or not) of
a norm from a normative system. In other words, derogation is taken to be the
norm-theoretic analogue of contraction,3 and the working hypothesis is that the
concept of positive permission can be fruitfully analysed in terms of it.

In classical revision-theory, a contraction on a set is carried out by inter-
secting maximally non-implying subsets, aka. remainders. That is, to remove an
element a from a theory A one considers subsets of A that are such that they
do not entail a whereas all proper supersets do. The outcome of the operation
is then taken to be that which all selected remainders agree on. This has proved
to be a robust and sustainable mathematical idiom, and we see little reason to
deviate from it.4

Definition 3 (Remainders). G ⊥ (a, b) is the set of H such that 1) H ⊆ G,
2) (a, b) /∈ out(H), and 3) If H ⊂ I ⊆ G then (a, b) ∈ out(I)

This definition is neutral to the question of whether G is an open or a closed set
(modulo out). In the latter case we have the following property:

Lemma 5. H = out(H) if (a, b) ∈ G, H ∈ G ⊥ (a, b) and G = out(G).

Proof. This is is [19, lemma 5.2]:

Indeed this property can easily be verified to hold for any closure operator. It
holds in particular for classical consequence Cn. In what follows we shall there-
fore allow ourselves to overload the operator ⊥, using it to denote remainders of
sets of norms as well as remainders of sets of formulae (the arguments to ⊥ will
generally suffice for disambiguation). Similarly we shall let the ‘−’ operator do
dual service both as a contraction operator and as a derogation operator :

Definition 4.

1. G− (a, b) :=
⋂

(G ⊥ (a, b))
2. A− a :=

⋂
(A ⊥ a)

Note that this definitional pattern accomodates both the base and theory ver-
sions, so called, of derogation and contraction, depending on whether or not the
3 Stated differently, we understand derogation in terms of exception or defeat. See e.g.

[9] for a similar interpretation.
4 The same paradigm of norm-system change was independently proposed in [4] and

[18]. Both with input/output logic as their point of departure. They differ in that
former adopts an axiomatic approach whereas the latter proceeds constructively.
Another source that proceeds constructively is [9]. It is, however, based on a defea-
sible logic rather than on input/output logic. The ramifications of these differences
remain to be explored.



set in question is closed under the corresponding consequence operation. Note
also that both operators are full-meet.

Now, since permissions will be analysed in the larger context of a system,
the proper unit of analysis is a code 〈G,P 〉 consisting of a set of explicitly stated
mandatory norms G and a set of explicitly stated permissive norms P . Some-
times, for brevity, P will be referred to simply as the set of explicit permissions,
although, strictly speaking, it is a set of permissive norms. In the general case
where (a, b) is an implied norm, we shall say that it is a mandatory or a permis-
sive, norm (as the case may be) according to or in such a code, in which case it
means that b is required or permitted, as the case may be, by that code whenever
a is true. As observed by two of the reviewers, we do not give the mechanism
to compute the closure of the code 〈G,P 〉 as such. While this is indeed some-
thing that needs to be adressed at some point, we believe that the interplay of
mandatory and permissive norms needs to be, and can be, studied first.

Now, recall that exemptions are essentially exemptions from something. That
is, an exemption always relates to a background prohibition. In other words, the
permissive provision acts as a defeater in relation to prima facie applicable law.
This suggests the following definition, which was proposed in [19]:

Definition 5 (Exemptions). (a, b) is an exemption according to the code 〈G,P 〉
iff (a,¬b) ∈ out(G) \ out(G)− (c,¬d) for some (c, d) ∈ P such that c ≡ a.

Thus, (a, b) is an exemption if a prohibition (a,¬b) can be derived from the code,
but this prohibition is overriden by an explicit permissive norm (c, d). We shall
say that (a, b) is an exemption by the explicit permission (c, d). Exemptions are
thus cast as cut-backs on the code required to respect the explicit permissions
in P . More precisely (a, b) is an exemption if the norms in G entail a prohibition
that regulates the state of affairs a by prohibiting b, and (a,¬b) is such that,
unless it is removed, the code will contradict an explicit permission in P . To see
how this concept behaves, consider the following example:

Example 1. Put G := {(t,¬p)} and P := {(c, p)}. Think of these norms as a
general prohibition against processing personal information and as a permission
for the case of consent respectively. We have (t,¬p) ∈ out(G), whence processing
personal information is in general prohibited (that is, it is prohibited in the
absence of information to the contrary). Note that the norm (t,¬p) covers all
cases. In particular it covers the case of consent since (c,¬p) ∈ out(G) by SI.
However, (c,¬p) /∈ out(G)− (c,¬p), so (c, p) constitutes an exemption.

Exemptions, as so defined, have several interesting properties, for instance:

Proposition 1 (Output weakening). If (a, b) is an exemption in 〈G,P 〉 then
so is (a, c), given that (a,¬c) ∈ out(G) and b ` c.

Thus if it is permitted to process some item of personal information on a given
condition, and we assume that processing entails access, then accessing the in-
formation is allowed. An easy consequence of output weakening is the following
property of disjunctive exemption:



Proposition 2 (Disjunctive exemption). If (a, b) and (a, c) are exemptions
according to 〈G,P 〉 then (a, b ∨ c) is an exemption according to the same code.

On the negative side, exemptions do not satisfy input weakening, i. e. one cannot
infer an exemption (a ∨ c, b) from the existence of an exemption (a, b). This is
as it should be. Consider again §8 of the Personal Information Act: If we were
to endorse input weakening, then we would have to conclude that processing
personal information is permitted if the registered person is simply unable to
consent. Thus, shooting him would be one way of obtaining permission to access
his information. Hence, exemptions should not satisfy input weakening.

Nor should they satisfy input strengthening, actually, because a permission
may be toggled on and off under increasingly specific circumstances. Norwegian
intellectual property law (LOV-2006-12-22-103) provides one example. §2 states
a general restriction on the production of copies: ‘Intellectual property gives
exclusive rights to produce copies, temporary or permanent’. An exception is
recognised in §11a: ‘If a temporary representation of a work is essential to a
process whose sole purpose is to facilitate the legitimate use of the work then
§2 is suspended’. The statute then goes on to state an exception in turn to this
exception: ‘this provision does not apply to computer programs and databases’.
Hence, a permission to produce a copy of a piece of intellectual property may be
toggled off again when more is known about the circumstances and the nature
of the work. This strongly suggests that permissive norms should be regarded as
classical with respect to the antecedent in the terminology of [6].

Classicality wrt. the antecedent is implement in definition 5 by the require-
ment that antecedents of exemptions be equivalent to the antecedent of some
explicitly stated permissive provision. No such requirement is placed on conse-
quents, so exemptions are classical with respect to the antecedent and normal
with respect to the consequent. However, a complete characterisation remains
an open problem.

Having the set of exemptions under reasonable control we are now in position
to say something substantial about antithetic permission. The idea, as put in
words by Makinson and van der Torre (who in turn give Alchourrón credit for
it), is to see (a, b) as permitted whenever, given the mandatory norms in G,
we can’t forbid b under the condition a without thereby comitting ourselves to
forbid, under a condition c that could possibly be fulfilled, something d which is
implicit in what has been explicitly permitted. Another way to put it is to say
that antithetic permissions prevent the set of mandatory norms from growing
in such a way as to render explicitly permitted actions forbidden. This checked-
growth perspective may be expressed as follows:

Definition 6. (a, b) is antithetically permitted in 〈G,P 〉 iff (a,¬b) /∈ out(G ∪
(a,¬b))− (c,¬d) for some (c, d) ∈ P with a ≡ c.

That is, (a, b) is antithetically permitted in 〈G,P 〉 if it would be anulled by an
explicit permission (c, d) in P were it to be added to the code G. As with ex-
emptions, we shall say that (a, b) is antithetically permitted by (c, d). Antithetic
permission as so defined does not coincide with the concept of exemption, but



there is obviously a quite close relationship between them. For one, the latter
class is subsumed by the former:

Theorem 1. If (a, b) is an exemption in 〈G,P 〉 then (a, b) is antithetically per-
mitted in the same code.

Proof. This is [19, theorem 5.21]:

As regards the difference between definition 6 and the definition of antithetic
permission in [13] (or as it is called, dynamic positive permission), it is mainly
this: The latter only requires that G ∪ (a,¬b) entail a norm that contradicts a
positive permission. It is, in other words, closer to the following:

Definition 7. (a, b) is dynamically permitted according to 〈G,P 〉 iff (c, d) ∈
out(G ∪ (a,¬b)) for some (c, d) ∈ P with a ≡ c.

We call it dynamic permission to underscore its affinity with the corresponding
definition in [13], of which it is a straightforward translation with minor modi-
fications. Now, unlike 7, definition 6 requires that (a,¬b) be actually overriden
by (c, d) if added to the code. This difference is subtle. According to definition 6
(a, b) is not antithetically permitted if (a,¬b) is deemed more worthy of retaining
than other norms already in the code. When the derogation operation is full-
meet there is no difference between the two—definition 6 and 7 are equivalent.
However, they come apart in the general case: There are partial meet derogation
operators capable of distinguishing between the two. Thus another way to ex-
press the difference between them is to say that definition 6 but not 7 is sensitive
to the priority structure of the code, as expressed e.g. by a selection function
on remainders. Definition 6 does not deem (a, b) antithetically permitted just
because the addition of (a,¬b) would violate a positively permitted norm, for
there may be ways of restoring compliance that do not require the exclusion
of (a,¬b). One consequence of this is that the relationship between antithetic
permissions and exemptions becomes more stable and regular, as witnessed by
the following theorem:

Theorem 2. If (a, b) is antithetically permitted in 〈G,P 〉, then it is an exemp-
tion in 〈G ∪ (a,¬b), P 〉.

Proof. This is [19, theorem 5.19]

In other words antithetic permissions are exemptions in a larger code. This agrees
well with intuition, and also finds support in the literature:

This is what happens with constitutional rights and guarantees: the con-
stitution rejects in advance certain norm-contents (that would affect
basic rights), preventing the legislature from promulgating this norm-
content, for if the legislature promulgates such a norm-content, it can
be declared unconstitutional by the courts and will not be added to the
system [2, pp. 397–398].



Theorem 2 spells out, with welcome precision, what it means for a permissive
provision, such as e.g. a constitutional guarantee, to reject a norm in advance,
as Alchourrón and Bulygin put it.

Now, as it turns out, definition 6 admits an equivalent representation:

Theorem 3. (a, b) is antithetically permitted in 〈G,P 〉 iff (a,¬b → ¬d) ∈
out(G) where (c, d) is an exemption or an explicit permission in the same code
such that a ≡ c.

Proof. This is [19, theorem 5.16].

Alas, we can now prove that the existence of an exemption makes everything
antithetically permitted under the conditions of the exemption. This is the an-
nounced triviality result:

Theorem 4. If (a, b) is an exemption according to 〈G,P 〉, then (a, e) is anti-
thetically permitted in 〈G,P 〉 for an arbitrarily chosen e.

Proof. If (a, b) is an exemption in 〈G,P 〉, then (a,¬b) ∈ out(G)\out(G)−(c,¬d)
for (c, d) ∈ P with a ≡ c. There is thus an F ∈ out(G) ⊥ (c,¬d) with (a,¬b) /∈ F ,
which, since (a,¬b) ∈ out(G) means that (c,¬d) ∈ out(F ∪ (a,¬b)). Hence, it
follows by lemma 3 that (a,¬b → ¬d) ∈ out(G). Now, (a,¬b) ∈ out(G) by
assumption, and we have (a,¬b→ (¬e→ ¬b)) from (t, t) by SI, whence (a,¬e→
¬b) by AND. Taking stock we have (a,¬e → ¬b), (a,¬b → ¬d) ∈ out(G), so
(a,¬e→ ¬d) ∈ out(G) by AND and WO.

Note that this result has general import as it shows that full meet theory con-
traction on sets of norms is very heavy handed—as one would expect. As regards
the concept of permision, one response would be to climb up the ladder of gener-
ality and introduce a selection function on remainders. However, in this paper we
have chosen the road less travelled by: We shall require of positive permissions
that they be relevant to the explicit provisions from which they follow. As we
shall see, relevance will counterbalance the negative impact of the more noto-
rious quirks of material implication, thereby restoring the concept of antithetic
permission to the status of a genuinely informative concept.

4 Relevance and contraction: A brief recapitulation

The present section lists the most important definitions and results of the theory
of relevance through propositional letter sharing as developed in, among others,
[17] and [16]. This material is included for expository completeness—in order to
make the paper reasonably self-contained. We lay no claim to originality, and
the reader should consult the cited papers for details and proofs.

Consider any two formulae a and b. As a first shot, one may consider them rel-
evant to each other iff they share an elementary letter. It is well known, however,
that this definition makes the concept of relevance highly syntax-dependent (see
[16]). Indeed, by this simple criterion every formula c will be relevant to any other



formula d under some logically equivalent representation, for we may choose to
work with c in the form c ∨ (c ∧ d).

Syntax-dependence may be overcome by comparing, not the formulae sim-
pliciter, but rather a least letter-set representation of them. The least letter-set
theorem was proved in the general case in [14], and says that for any contingent
set A of formulae, finite or infinite, there is a unique least set of elementary
letters such that A can be equivalently expressed using only letters from that
set. We shall follow [16] in using a choice function ∗ to select least letter-set
forms. Thus A∗ will denote a least letter-set representation of A and similarly
for formulae. Now, to eliminate syntax-dependence from the (or rather this) con-
cept of relevance one deems a and b relevant to each other iff a∗ and b∗ have
an elementary letter in common. It is not difficult to show that this solves the
problem of syntax-dependence as it has been stated thus far.

However, consider now any three distinct elementary letters a, b and c. Since
they do not share any letters they are not relevant to each other by either of
the above criteria. But, if we take into consideration the set A := {a→ b, b ∧ c}
(the particular form of these sentences doesn’t matter, only what letters they
contain), then it seems natural to say, since a is relevant to b and b to c, that
a is relevant to c modulo A. This is a more general notion as relevance is now
mediated by a background theory (which is undoubtedly more realistic). The
challenge though is how to avoid reintroducing syntax-dependence, this time in
the background theory. A solution was provided by Parikh [17], who came up
with the ingenuous concept of a splitting :

Definition 8 (Splitting). Let A be a contingent set of formulae and let E =
{Ei}i∈I be a partition of its least-letter set. Then E is a splitting of A iff there is
a family {Bi}i∈I of sets of formulae such that E(Bi) ⊆ Ei and A ≡

⋃
{Bi}i∈I .5

Note that E is a special kind of partition of the least letter set of A, it is not
a splitting of A itself. Moreover, it is not required that Bi ⊆ A as long as the
union of all Bi is equivalent to A. A splitting is said to be finer than another if
each cell of the former is included in some cell of the latter. We have:

Theorem 5. Every contingent set A of formulae has a unique finest splitting.

Proof. This is [15, theorem 2.4].

The finest splitting theorem tells us that any set of formulae has a finest rep-
resentation as a family of letter disjoint sets [15, p. 994]. Although it is the
uniqueness of the partition E = {Ei}i∈I that is asserted, it turns out that the
associated Bi are unique too, up to logical equivalence [16, observation 3.2], so
we may abuse notation a bit by also calling

⋃
{Bi}i∈I the finest splitting of A.

5 This definition may be extended to cover the limiting case where A is inconsistent
or tautologous, but at the cost of limiting-case clauses in definitions, theorems and
proofs [16, p. 380]. We shall therefore consider only contingent sets henceforth. The
reader should bear in mind though, whenever this proviso occurs, that it is not a
real restriction.



We shall follow [16] in writing A# to denote both, relying on context to disam-
biguate. Parikh’s relevance criterion is formulated in terms of finest splittings as
follows:

Definition 9 (Cell-relevance modulo A). Let E := {Ei}i∈I be the finest
splitting of a contingent set A. We say that a is cell-relevant to b modulo A iff
either E(a∗) ∩ E(b∗) 6= ∅ or E(a∗) ∩ Ei 6= ∅ 6= E(b∗) ∩ Ei for some i ∈ I.

This definition exploits the fact that finest splittings, unlike least letter-sets, not
only minimise the set of elementary letters, they also disentagle them, as far
as possible. For instance, {a ∧ b} is on least letter-set form but not on finest
splitting form, which is {{a}, {b}}. The finest splitting of A, one might say,
chops the logical content of A up into cells that encapsulate its least logically
independent parts. One may therefore deem two formulae relevant to each other,
modulo a given set, if they both share some letter (not necessarily the same) with
a cell in the splitting, because they can then not be independent of each other ‘in
the eyes’ of that set. This makes finest splittings behave rather more predictably
under revisions than sets in general. Indeed there is an intimate and interesting
relationship between finest splittings and contractions. What it amounts to is
this: If contractions are performed on A# instead of A, then, despite the classical
equivalence of A and A#, A# − a only removes elements that are cell-relevant
(henceforth simply ‘relevant’) to a modulo A, whereas A−a does not. The reason
for this is that when A#− a is the result of a partial meet contraction of a from
A#, then it is the intersection of some family of maximal a-nonimplying subsets
of A#. But if there is no cell Ei of the splitting that contains letters from both a
and a formula b ∈ A#, then the addition of b to any a-nonimplying subset of A#

will leave it a-nonimplying, so that b must be in all the maximal a-nonimplying
subsets of A#, and so in A# − a [15, p. 1000]. As a result we have:

Theorem 6. If A# ` a and A# − b ` a then a is relevant to b modulo A.

Proof. This is [15, theorem 4.1].

What has all this got to do with permission? Well, as we have defined the concept,
a positive permission is essentially a putting out of play of a contrary-prohibition
effected by means of a contraction on the set of norms. If we could generalize
theorem 6 to input/output logic, perhaps we could get the permission concepts
to behave more regularly, and thereby avoid the triviality result. That is the
ambition.

5 Bringing relevance to bear

For any H ⊆ L × L there is more than one way to define a splitting, as we
may split on one or both sides of the relation. That is, we may construct the
splitting of H from a splitting of either of H1, H2 or both. For reasons that will
be explained shortly, we shall choose the second option:



Definition 10 (Right-splitting). Let G be any subset of L× L such that G2

is consistent. Then the right-splitting of G, denoted G#
→, is the set⋃

{{a} ×G(a)# : a ∈ G1}

Right-splittings are well defined since G2 is consistent. For our purposes there is
no need to split on the left. The concepts we wish to charaterise, i.e. the permis-
sion concepts, are only defined for norms with logically equivalent applicability
conditions, whence no question of relevance arises on the input side. Right split-
tings have two properties that are crucial for our purposes. We set them out as
separate lemmata:

Lemma 6. Assume G = out(G) and that G2 is consistent. If G#
→(a) 6= ∅ then

G#
→(Cn(a)) is the finest splitting of out(G, a).

Proof. Suppose G2 is consistent. Then G#
→ exists. By assumption G#

→(a) 6=
∅ whence G#

→(a) ≡ G(a)# by definition 10. Now, out(G) = G so G(a)# =
out(G)(a)# = out(G, a)# by lemma 1. Hence it suffices to show that G#

→(a) =
G#
→(Cn(a)). Left-in-right is immediate. For the other direction suppose b ∈

G#
→(Cn(a)). Then there is a pair (a′, b) ∈ G#

→ s. t. a′ ∈ Cn(a). By SI it follows
that (a, b) ∈ G#

→ whence b ∈ G#
→(a) as desired.

Secondly, right-splittings are equivalent, modulo out, to the relations they split:

Theorem 7. out(G#
→) = out(G)

Proof. For the left in right it suffices, by monotony and idempotence for Cn, to
show that G#

→(Cn(a))) ⊆ Cn(G(Cn(a))). Suppose therefore b ∈ G#
→(Cn(a))).

Then there is a norm (a′, b) ∈ G#
→ with a ` a′. From the former we have

b ∈ G(a′)#, by definition 10, which since G(a′)# is equivalent to G(a′), means
that G(a′) ` b. Therefore, since a′ ∈ Cn(a), we have b ∈ Cn(G(Cn(a))) as
desired. For the converse direction, suppose b ∈ G(Cn(a)). Then there is a norm
(a′, b) ∈ G with a ` a′. From the former it follows, since G(a) ≡ G(a)#, that
G(a′)# ` b . By compactness for logical consequence there is therefore a finite
set b1, . . . , bn of elements of G(a′)# such that

∧n
i=1 ` b. Since a′ ∈ G1 we have

(a′, bi) ∈ G#
→ for 1 ≤ i ≤ n, by definition 10. It follows that G#

→(a′) ` b.
Therefore, since a′ ∈ Cn(a), we have that b ∈ Cn(G#

→(Cn(a))), and we are
done.

Our strategy now is as follows: We establish a one-to-one correspondence between
derogations on a code and contractions on its output. More specifically, we show
that each full meet derogation of a norm (a, b) from the consequences of a code
G, corresponds to the full meet contraction of b from the consequences of G(a).
Combining this with theorem 6 then, we may conclude that right-splittings of
codes of norms respect relevance among outputs under revisions of the code.

Definition 11. Let µ be a function such that µ(F ) = F (Cn(a)) for F ∈ G ⊥
(a, b).



Then µ maps remainders of a normative system to remainders of its output
under the input of the derogandum:

Lemma 7. If F ∈ G ⊥ (a, b) then µ(F ) ∈ G(Cn(a)) ⊥ b.

Proof. Suppose F ∈ G ⊥ (a, b) and suppose for reduction that µ(F ) /∈ G(Cn(a)) ⊥
b. By definition µ(F ) = F (Cn(a)), and since F ∈ G ⊥ (a, b) we have F ⊆ G
whence F (Cn(a)) ⊆ G(Cn(a)). There are thus two cases to consider:

1. Either F (Cn(a)) ` b: By compactness for logical consequence, there is thus
a finite set of rules (a1, b1), . . . , (an, bn) ∈ F such that ai ∈ Cn(a) for each
i ≤ n, and

∧n
i=1 bi ` b. Hence (a, b) ∈ out(F ), by repeated applications of

SI, AND and WO, contradicting F ∈ G ⊥ (a, b).
2. Or there is a B ∈ G(Cn(a)) ⊥ b such that F (Cn(a)) ⊂ B: It follows that

there is a d ∈ B\F (Cn(a)). Since B ⊆ G(Cn(a)) we have (c, d) ∈ G for some
c ∈ Cn(a). Clearly (c, d) /∈ F so (a, b) ∈ out(F ∪ (c, d)) by the membership
of F in G ⊥ (a, b). Now, since b /∈ B ⊃ F (Cn(a)) it follows that (a, b) /∈ F
whence (a, b) ∈ out(F ∪ (c, d))\out(F ). By lemma 4 we therefore have a ` c,
and by lemma 3 we have (a, d → b) ∈ out(F ). Hence F (Cn(a)) ` d → b so
B ` d→ b by monotony for classical logic. Since d ∈ B therefore, it follows
that B ` b, contrary to the assumption that B ∈ G(Cn(a)) ⊥ b.

This mapping is bijective:

Lemma 8. µ is surjective

Proof. We want to show that B = µ(F ) for every B ∈ G(Cn(a)) ⊥ b and some
F ∈ G ⊥ (a, b). Put F := {(c, d) ∈ G : B ` d and c ∈ Cn(a)}. We first show
that B = F (Cn(a)). For the left-in-right inclusion suppose d ∈ B ⊆ G(Cn(a))
then (c, d) ∈ G for some c ∈ Cn(a), so (c, d) ∈ F by the construction of F .
It follows that d ∈ F (Cn(a)). The converse inclusion is immediate from the
construction. Next we show that F ∈ G ⊥ (a, b). Since b /∈ B by the assumption
thatB ∈ G(Cn(a)) ⊥ b, it follows that (a, b) /∈ F sinceB = F (Cn(a)). Moreover,
F ⊆ G by the construction of F so it may be expanded to an F ′ ⊆ G such that
F ⊆ F ′ and such that F ′ ∈ G ⊥ (a, b). We show that F (Cn(a)) = F ′(Cn(a)).
The left in right inclusion is immediate. For the converse inclusion, suppose
F ′(Cn(a) * F (Cn(a)). Then there is a d ∈ F ′(Cn(a)) \ F (Cn(a)), whence
d /∈ B = F (Cn(a)). It follows that B ∪ d ` b so F (Cn(a)) ∪ d ` b, whence
F (Cn(a)) ` d → b. In other words, we have d → b ∈ Cn(F (Cn(a))), which
means that (a, d → b) ∈ out(F ) ⊆ out(F ′). But then (a, b) ∈ out(F ′) by AND,
since d ∈ F ′(Cn(a)) by assumption, contradicting F ′ ∈ G ⊥ (a, b).

Lemma 9. µ is injective.

Proof. We need to show that µ(F ) = µ(F ′) implies F = F ′ for F, F ′ ∈ G ⊥
(a, b). Suppose for reductio that F (Cn(a)) = F ′(Cn(a)), but F 6= F ′. Assume
without loss of generality, that (c, d) ∈ (F ′ \F ) 6= ∅. Then (a, b) ∈ out(F ∪ (c, d))
so a ` c and (a ∧ c, d→ b) ∈ F , whence (a, d→ b) ∈ out(F ). Moreover, (a, d) ∈



out(F ′), by SI, since (c, d) ∈ F ′. It follows that we have F (Cn(a))∪F ′(Cn(a)) `
d and F (Cn(a))∪F ′(Cn(a)) ` d→ b. However, since F (cn(a) = F ′(Cn(a)) this
is tantamount to saying F ′(Cn(a)) ` d and F ′(Cn(a)) ` d → b. Therefore
F ′(Cn(a)) ` b, whence (a, b) ∈ out(F ′), contradicting F ′ ∈ G ⊥ (a, b).

The correspondence between derogations and contractions follows as an easy
consequence:

Theorem 8. For any G ⊆ L× L: (a, d) ∈ out(G− (a, b)) iff G(Cn(a))− b ` d.

Proof. It suffices to show that (a, d) ∈
⋂

(G ⊥ (a, b)) iff d ∈
⋂

(G(Cn(a)) ⊥ b.
Suppose d ∈ RHS. Then there is a B ∈ G(Cn(a)) ⊥ b such that B 0 d. Now,
B = F (Cn(a)) for some F ⊆ G, since µ is surjective, so (a, d) /∈ out(F ). Hence
(a, d) /∈ LHS as desired. The other direction is similar, except that we appeal
to µ− rather than µ.

These theorems in hand, it is relatively straightforward to redefine the concept
of derogation in such a way that it can be shown to respect relevance among
outputs. Let’s first introduce the following shorthands:

Definition 12.

1. G v (a, b) =
⋂

(G#
→ ⊥ (a, b))

2. A v a =
⋂

(A# ⊥ a)

Note that G v (a, b) = G# − (a, b), and A v a = A# − a. The idea now is
to make positive permissions relevance-respecting by redefining the concept of
antithetic permission in the following manner:

Definition 13. (a, b) is antithetically permitted in 〈G,P 〉 iff (a, b) is not deriv-
able from out(G ∪ (a, b)) v (c,¬d) for some (c, d) ∈ P such that a ≡ c

The next, theorem, which is the main result of this paper, shows that this strat-
egy does work:

Theorem 9. According to definition 13, if G2 is consistent then (a, b) is anti-
thetically permitted in 〈G,P 〉 by (c, d) only if d is relevant to b modulo out(G ∪
(a,¬b), a).

Proof.

1. out(G ∪ (a,¬b)) v (c,¬d) 0G (a,¬b), by assumption
2. out(G ∪ (a,¬b))#→ − (c,¬d) 0G (a,¬b), by definition 12
3. (a,¬b) /∈ out(out(G ∪ (a,¬b))#→ − (c,¬d)), by out = deriv
4. (a,¬b) /∈ out(out(G ∪ (a,¬b))#→ − (a,¬d)), by c ≡ a
5. out(G ∪ (a,¬b))(Cn(a))#→ − ¬d 0 ¬b, by theorem 8
6. out(out(G ∪ (a,¬b)), a)# − ¬d 0 ¬b, by lemma 6
7. out(G ∪ (a,¬b), a)# − ¬d 0 ¬b, by idempotence for out



8. b is relevant to d modulo out(G ∪ (a,¬b)), by theorem 6.

It remains to show that this suffices to avoid the triviality result from theorem
4. The following simple example will do:

Example 2. Let G := {(a,¬b)} and P := {(a, b)}, where b is an elementary
letter. Then (a, b) is an exemption regardless of whether we use − or v in
the definition of exemptions. However, (a, e) is not antithetically permitted for
arbitrary e, since we may choose e in such a way that it is not relevant to b
modulo out(G∪ (a,¬e), a). For instance, let e be another elementary letter then:

– out(G ∪ (a,¬e), a)# = {{b}, {e}}

Clearly E(b∗)∩E(e∗) = ∅, whence a is cell-relevant to bmodulo out(G∪(a,¬e), a)
only if E(b∗) and E(e∗) each share an elementary letter with the same cell in
the finest splitting. By inspection this is not the case.

6 Discussion

In order to exploit the correspondence from theorem 8 in combination with
theorem 6, the output of the split code, on an arbitrary input, must itself be
a set of formulae on finest splitting form. This is not in general ensured by
definition 10, and it does not hold for open sets of norms G. For open G, G1

does not contain all possible inputs. Therefore the image of an open G under an
arbitrary input might not be on finest splitting form, as the following example
shows:

Example 3. Put A := {a} and B := {a ∨ b}. Then A# = {{a}} and B# =
{{a, b}}. However (A ∪ B)# = {{a}}, whence, since finest splitting forms are
unique up to logical consequence, it follows that A ∪B is not on finest splitting
form.

The significance of theorem 9 thus consists in the fact that it shows the potential
gain in searching for canonical forms also for codes of norms, and in the fact that
operations of change emerge as an important factor in evaluating the suitability
of such forms. Theorem 9 shows that splittings, and least letter set forms more
generally, are worthy of attention.

To be sure, it is not obvious that splitting is always deontically harmless.
Some norms it seems, such as ‘don’t drink and drive’ are essentially conjunctive
and should not be split, lest driving be forbidden per se. However, as shown in
[16], it is possible to protect chosen elements from the splitting, thus suspending
the relevance criterion for particular distinguished cases. We conjecture that this
technique is easily adapted to input/output logic, for instance to certain cases
of conjunctive norms. In combination with splitting it would give us very good
control of the behaviour of a code of norms under revisions of the code, and is
a topic for future investigations.



Apart from this, the correspondence between contraction on sets of sentences
and sets of norms (in the input/output sense) recorded in theorem 8 may have
an eigenvalue as it allows us to carry results back and forth between the two
idioms. It would for instance be interesting to see how entrenchment relations
on sets of sentences translate into priorities on sets of norms.

7 Related work

The idea of analysing positive permission as exceptions to mandatory norms has
forerunners in the litterature. It is discussed in [4] where, ignoring a few tech-
nical details and a few limiting cases, the set of positive permissions on input
a according to a code 〈G,P 〉 is defined in terms of the set {out(H ∪ (c, z), a) :
H ⊆ G, (c, z) ∈ P and out(G′ ∪ (c, z), a) ∪ a 0 f}. This is similar to the account
given in [13] insofar as permissive norms are treated as weak obligations. That
is, permissive norms are allowed to generate output alongside obligations. In the
framework presented in this paper, explicit permissive norms are used only as
constraints, i.e. they do not contribute to the output of the code. In [7] permission
is defined as the non-derivability under defeaters of a contrary obligation. This
is also, it seems, a close relative of the idea presented in this paper. However, [7]
is based on a rather complex default logic-framework, which precludes a point
for point comparison with the present work. It is a topic for future investigations.
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