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Abstract This paper generalises classical revision theory of the AGM brand to sets of
norms. This is achieved substituting input/output logic for classical logic and tracking the
changes. Operations of derogation and amendment—analogues of contraction and revision—
are defined and characterised, and the precise relationship between contraction an deroga-
tion, on the one hand, and derogation an amendment on the other, is established. It is argued
that the notion of derogation, in particular, is a very important analytical tool, and that even
core deontic concepts such as that of permission resists a satisfactory analysis without it.
By way of illustration the last section of the paper analyses the much debated concept of
positive permission, of which there turns out to be more than one kind.
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1 Introduction

Formal deontics—the study of norms and normative modalities using mathematical tools—
has reasserted itself as a serious academic discipline largely due to its potential for appli-
cation in computer science. Multi-agent systems, in particular, have been put forth as a
principal case, but more generally a deontic level of representation is arguably an essential
component of any system that recognises the possibility of failure, non-conformity or devia-
tion from a stipulated optimum (9). Examples of such systems include on-line marketplaces,
disaster response system, virtual supply chains, and e-government services.

There is widespread agreement that a static model of codes of norms runs counter to the
dynamic nature of normative systems (see e.g. (7; 8; 9; 17; 47)). It is an essential premise
at least for open multi-agent system that the behaviour and the interaction of agents in the
system cannot be accurately predicted. The system may therefore need to adapt to changing
circumstances, new norms may need to be created and old ones removed. The system may
also need to utilise different subsets of norms under different circumstances, as for instance
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when an agent violates a primary obligation, thereby bringing a reparational norm into play,
or it may need to choose which one of two conflicting norms that should prevail for a given
case in which there is a conflict of norms (see e.g. (20)).

Indeed, it can be argued that several core deontic concepts are themselves inherently
dynamic, and that an account of a code’s modes of transformation is one of the tools needed
to characterise those concepts. Consider for instance permission. It is commonly agreed that
permitted actions fall under one of two broad kinds; those that are negatively permitted and
those that are positively permitted or permitted in decree. Negative permission is simple,
and can be regarded as the dual of obligation just as possibility is the dual of necessity in
alethic modal logic. Positive permission, on the other hand, is more elusive. A permissive
legal norm—regulating, say, the collection and dissemination of personal information—is
often formulated along the following lines: “Personal information may only be processed
by the consent of the registered person, or if processing is statutorily warranted, or if such
processing is required in order to honour an agreement with the registered person (...)”. The
word ‘only’ in the opening sentence indicates that processing of personal information is
by default prohibited. The text then goes on to list a set of explicitly recognised cases that
are excepted from the ban and which therefore constitute permitted actions. Permission is
implemented, one might say, by restricting the set of norms that are deemed applicable under
specified circumstances: There is a general norm that is deemed to be valid or applicable by
default and always, save for the cases that are subsumed by the explicitly stated permissions.
When one of the latter cases is satisfied, the set of applicable norms contracts to exclude the
general prohibition, leaving a smaller code in force. This, I shall argue, is at least a fruitful
way to look at it.

I shall refer to the above mentioned contraction operation as derogation. In law the term
‘derogation’ denotes the partial repeal or abrogation of a law by a later act that limits its
scope or impairs its utility and force. For example, statutes in derogation of common law are
those statutes which effect a change in the principles of precedent developed in earlier case
law. Abstracting away the temporal relationship between the derogans and the derogandum
as well as the sources of law (the issuing authorities), derogating from a norm n means
limiting the scope of n by registering exceptions to it. It is this more general notion that is
the principal target of analysis in the present paper. I take it to be sufficiently close to the
legal sense of ‘derogation’ to warrant a reuse of the term. The reader should bear in mind,
though, that the legal concept is really a special case of the notion analysed here.

Derogation, so understood, will be analysed in terms of contractions on a set of norms,
which is a generalisation of the corresponding notion in the so-called AGM-framework of
theory revision (4; 5). Since its inception in the 1980s, revision theory has grown into a
well-studied research programme that branches off into numerous other disciplines, such as
epistemology, artificial intelligence and multi-agent systems. Two of the main strengths of
the idiom is its generality and its wide applicability (56). Change, considered in abstracto,
is reduced to consistency-preserving addition and subtraction of items to and from a set of
formulae modulo some notion of implicature. This ‘beating heart’ perspective on change
is simple and compelling, and has turned out to be a robust and sustainable mathematical
idiom.

The reader may be more used to thinking of exceptions in terms of non-monotonic in-
ference rather than in terms of contraction. From a philosophical point of view it is of little
consequence which idiom we choose, however, for it is well known that theory revision and
non-monotonic inference are two sides of the same coin: Every operator of (AGM) contrac-
tion determines a revision operator via the Levi identity, and every revision operator may be
considered a non-monotonic consequence operator when projected onto its right argument
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(the two-place operation of revising K with a, written K ∗ a, becomes the unary operation
of revision-with-a modulo K, written ∗K(a)). Conversely, any non-monotonic consequence
operation can be seen as a revision function, which in turn determines a contraction func-
tion via the Harper identity (see. (35, chapter 6), (37)). Therefore, in the principal case of
revision where K is contracted so as to exclude ¬a prior to the addition of a, one may if one
likes equally well speak of a as an exception to the default assumption ¬a implicit in K.

Now, in order to move towards a general theory of norm-system dynamics, similar in
general principle to the AGM paradigm, what we need first of all is a well-defined notion of
a code or system of norms, construed in analogy to the notion of the Tarski-closure of a set of
sentences. A closure operator that fits the bill, or so I shall argue, is supplied by input/output
logic as set out in a series of papers by Makinson and van der Torre (38; 39; 40; 41). Indeed
AGM revision and input/output logic turn out to combine beautifully to give us exactly what
we need in order to move towards a general theory of norm system dynamics. I shall attempt
to illustrate the utility of the resulting theory—for purposes of conceptual analysis—towards
the end of the paper, by analysing the concept of positive as outlined above.

The layout of this paper is as follows: Section 2 gives an informal introduction to the in-
put/output idiom, with a special emphasis on its relation to the philosophy of norms. Section
3 records some logical properties of the theory of simple-minded output, so-called, that will
be used as lemmas in subsequent sections. It focuses on three notions in particular; equiv-
alence, complementation and maximal consistent subsets—all modulo input/output impli-
cature. Section 4 gives a complete AGM-style characterisation of the derogation operation,
whilst section 4.1 provides a mapping into classical AGM contraction that can be used to
migrate results from classical contraction theory over into the theory of derogation and vice
versa. Norm-system revision, or amendment as I shall call it, is defined and characterised in
section 5. The paper ends with a case study in section 6 of the concept of positive permis-
sion, designed to illustrate the utility of the derogation operator for purposes of conceptual
analysis.

The reader should note that there is some literature on the topic of norm-system dynam-
ics already. Independently of the present work Boella et al. (8) proposed that a theory of
norm-system dynamics be built precisely on AGM revision and input/output logic. Boella
et al. fix attention on a set of axioms (or ‘postulates’) that are considered plausible candi-
dates for an operator of norm-system contraction. However, it is a weakness of their account
that no construction is offered against which the adequacy of these postulates can be mea-
sured. That is, Boella et al. do not map their postulates to a semantics (broadly understood)
that gives the meaning of the postulates in terms of operations on the code of norms. As a
consequence, certain subtleties of input/output logic escape notice in the formulation of the
postulates. I shall comment on some of these points along the way. Other recent sources that
discuss norm-system dynamics include Governatori et al. (15), Governatori et al. (16) and
Governatori et al. (17). Here the focus is on the notions of legal abrogation and annulment,
and the formalism is a temporal and modal extension of defeasible logic. It is thus different
from the present paper with respect to the underlying logic. Moreover the central concern
seems to be to capture a notion of retroactive legal change, rather than, as in the present
paper, to develop an abstract and general model of norm-system evolution.
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2 Input/output logic as a logic of norms

A few notational preliminaries first: We use lower case letters a,b,c... to range over formu-
lae of classical propositional logic, denoted L. The distinguished letters t and f will stand for
arbitrary tautologies and contradictions respectively. Sets of formulae are denoted by upper
case letters from A to D. Upper case letters from F to I denote sets of norms, that is, binary
relations over subsets of L. When G⊆ L×L we denote its pre-image under L as G1 and its
image under L as G2. Image-formation will be denoted by ordinary parentheses, for instance
(G∪H)(a) denotes the image of the relation G∪H under a. Classical consequence is writ-
ten with a turnstile ` when considered as a relation over 2L×L, and as Cn when viewed as
an operation on 2L onto itself. To make the notation less verbose, we follow the convention
of writing A∪a instead of A∪{a}, and similarly for norms.

Just as the theoretical paradigm of a theory is a logically closed set of sentences (i.e. a
set of sentences closed under entailment), the theoretical paradigm of a normative system
may be taken to be a set of prima facie mandatory norms that contains all norms it entails.
In input/output logic a (prima facie) norm is simply a pair (a,b) correlating an applicabil-
ity condition, trigger or input a with a duty, optimality condition or output b—these will
sometimes be denoted neutrally as the antecedent and consequent of a norm respectively.
The correlation between the antecedent and consequent is logically arbitrary in the sense
that a pair is not a formula, so there is nothing to the norm (a,b) over and above the fact
that some authority requires that b be done given a. One could see this as an expression of
a kind of anti-naturalism, or conventionalism, w.r.t. to norms. The validity of a norm (a,b)
need not have any ontological or epistemological status beyond that of being decreed to
hold. A code of norms in input/output logic is simply a set G of such pairs, from which it
follows that the explicitly declared requirements, in any situation a (or alternatively, on any
input a) according to G, can be obtained by taking the image of G under a. The fundamental
notion of normative implicature in turn allows implicit norms to be derived from the explicit
ones—i.e. from the ones contained in G—e. g. by recognising that which implies (logically)
the trigger of a norm as itself a trigger of a norm, and that which follows (logically) from
an explicitly declared requirement as itself mandated by a norm. To be more precise, the
simplest model of a normative system is an operation out of type 2L×L×L 7→ 2L defined as
follows:

Definition 1 out(G,a) =Cn(G(Cn(a)))

I shall allow myself to represent this out-operator sometimes by projecting it onto its left
argument, writing out(G). These two modes of expression will be assumed equivalent by
putting (a,b) ∈ out(G) iff b ∈ out(G,a).

Input/output logic, of which definition 1 gives the simplest example, addresses a funda-
mental problem in the logic of norms independently observed by Dubislav and Jørgensen
(11; 27): On the one hand, truth-functional operators like ‘and’, ‘or’ and ‘not’ are routinely
applied to items construed as norms, forming complex norms out of primitive ones . On the
other hand, norms are not in general true or false, i.e. they do not in general have truth-
values, so it is not clear what could be meant by such compounding (34). To be sure, norms
are clearly content-full in some sense and perhaps some norms have truth values, for in-
stance moral norms, as the moral realist claims. He may well be correct that it simply is
wrong to take pleasure in another’s pain, to taunt and threaten the vulnerable, to prosecute
those known to be innocent, to torture babies for fun, and to sell another’s secrets solely for



5

personal gain (30, p. 248). Perhaps one need not infer such principles from other beliefs in
order to be justified in holding them true, perhaps we should just accept them as self-evident
and ask for no further argument. After all, there are other kinds of statements we would be
willing to accept without argument, for instance that an object cannot be both red and white
all over, or, that if you are suffering then you know that you are suffering. In such cases, our
belief is direct and immediate, and if asked for reasons we tend to reply ‘don’t you just see
it?’, without being able to give any deeper or more fundamental reason than that. Perhaps
specifically moral norms are true in this sense. If that is the case, then a valid moral argument
is one that preserves truth, just as logically valid arguments do. Ethical controversy, then, is
primarily about truth, and the authority of moral norms is proportional to the legitimacy of
their truth-claim (30, ibid.).

Yet, it should be obvious that this property, if it exists, does not generalise. Consider for
instance the regulation from Norwegian law that requires all shops to be closed on Sundays
except those that deal mainly in groceries and have a total sales area of less then a hundred
square meters. It would certainly require an ingenious argument to convince people that this
norm is true as such, that is, true as a stance-independent feature of reality. It is much more
natural to view it as a logically arbitrary stipulation laid down by the Norwegian authorities
for political reasons.

Of course one could say that it is true of Norwegian law that the regulation is part of it.
This route has often been chosen by norm-theorists of a formal bent, who continue to rely on
truth to supply a notion of inference. The idea in general outline, familiar I am sure to many,
is that the Jörgensen/Dubislav problem may be solved by making a distinction between two
uses of norm-sentences; norm sentences can be used for prescriptive purposes to influence
and direct the behaviour of agents, or it can be used descriptively to state that something
is obligatory, permitted or prohibited according to a given system of norms. Consider the
following example from (26):

Motor vehicles ought to use the right-hand side of the road. (1)

Such a statement can be used or uttered performatively to direct the behaviour of the citizens
of a given country, say Norway, but it can also be used to state something about Norwegian
law, which is true of it, but false of other legal systems such as e.g. that of the UK. It is
true of Norwegian law, but false with respect to British law, that such a norm belongs to it.
I take it that the distinction between descriptive and prescriptive uses of a norm needs no
lengthy elaboration. For the sake of precision, we may put the point in terms of assent. If
I assent, sincerely, to a sentence attributing a norm to a code or normative system, then I
form a corresponding belief about that system. If, on the other hand, I assent to a norm used
prescriptively—say one that requires me to drive on the right hand side of the road—then I
cannot be assenting sincerely if I do not form an intention to act accordingly.

In the philosophical literature descriptive norm sentences are usually called normative
statements or norm-propositions. I prefer ‘norm-attributions’ myself; what such statements
do is essentially to assert the membership of norms in the sets that constitute the system.
Now, norm-attributions unlike norms simpliciter are true or false of course. The logical
relations between them can therefore be understood in the usual way in terms of truth-
preserving inferences. This has been perceived by many to put us in a position to read
off systematic relations between the norms themselves from the logical relations holding
between the norm-attributions. Such a view has been championed by e.g. Alchourrón and
Bulygin (2), von Wright (58) and by Hans Kelsen in his classic Pure Theory of Law:
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Since legal norms, being prescriptions ... can neither be true nor false, the ques-
tion arises: How can logical principles, especially the Principle of the Exclusion of
Contradictories and the Rules of Inference be applied to the relation between legal
norms, if according to traditional views these principles are applicable only to as-
sertions that can be true or false. The answer is: Logical principles are applicable,
indirectly, to legal norms to the extent that they are applicable to the rules of law
which describe the legal norms and which can be true or false ... one norm may be
deduced from another if the rules of law that describe them can be deduced from a
logical syllogism (28, p. 74).

What Kelsen calls ‘rules of law’ are just norm-attributions, and Kelsen takes them to pro-
vide an indirect route to the logic of norms proper. This claim faces one basic difficulty
from which there is, in my opinion, no recovery; it is either trivial or viciously circular. This
becomes clear as soon as one asks oneself ‘what determines the membership of the norms
in the system?’. Of course, the answer to that depends on how we construe the concept of
a system. We have essentially only two choices: We may say that any set of norms G is a
normative system. In that case the only norm-attributions we can form are purely boolean
combinations of simple membership assertions ‘it is true of Norwegian law that wearing a
mask in public is in general prohibited and it is true that driving on the right is mandatory’
and so forth. Alas, if this is all we can do, then there simply is no logic of norms or norma-
tive reasoning beyond boolean logic. The other option is to say that the system is the closure
C(G) of G under some suitable operation C. Depending on C this could perhaps give us
more interesting and non-trivial norm-attributions. Clearly, though, we would have to know
the behaviour of C before we can know which norm-attributions are true of C(G). Thus
C, whatever it is, must be construed as conceptually prior to the norm-attributions. Stated
differently, the truth of norm-attributions can only be determined if we already know the
logic that governs the norms, not vice versa. Norm-attributionists have the tail wag the dog,
therefore. True, any given norm n of a normative system s can be mapped to a corresponding
statement ‘ ‘n’ is a valid norm of s’, but we come to know that that is true by deriving n from
s.

Judging by the forerunner (34) as well as the original input/output papers themselves
(38; 39; 40), the Jørgensen/Dubislav-problem was the principal motivation for the introduc-
tion of the input/output idiom. Input/output logic is conceived as a logic of norms from its
very inception:

Input/output logic takes its origin in the study of conditional norms. These may
express obligations under some legal, moral or practical code, goals, contingency
plans, advice, and so on. They may be expressed in imperative form, in such-and-
such a situation, do so-and-so, or in indicative form, in terms like: In such-and-
such a situation, so-and-so should be the case, or . . . should be brought about, or
. . . should be worked towards, or . . . should be followed—these locutions corre-
sponding roughly to the kinds of norm mentioned (40, p. 1).

In other words, input/output attempts to tackle the Jørgensen/Dubislav-problem head-on by
offering an alternative to the proposition as the paradigm of a norm. The proposition is
replaced with an abstract conception of a norm whose principal characteristic is that a con-
ditional norm is no longer construed as a conditional in the logical sense, and is not assumed
to have a truth-value. More specifically, a norm is taken to be a logically arbitrary stipulation
and the role of logic is seen as a modest one: To preprocess input before it goes in to the
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system and to unpack the output on the other side (40).

The out operator from definition 1 admits a syntactical representation in terms of a
system of inference rules:

Theorem 1 For any G, out(G) is precisely the set of norms that are derivable in the system
consisting of axioms (t, t) and (a,b) for all (a,b) ∈G, together with the inference rules (this
is (38, Observation 1)):

SI
(c,b)
(a,b)

if a ` c AND
(a,b),(a,c)
(a,b∧ c)

WO
(a,b)
(a,c)

if b ` c

EQR
(a,b)
(a,b′)

if b≡ b′ EQL
(a,b)
(a′,b)

if a≡ a′

In (40) EQL and EQR are treated as ‘silent rules’ that may be applied at any step without jus-
tification. I prefer to state them explicitly. Here as in (40) a derivation is understood in terms
of rules as follows: A rule r of arity n≥ 0 is an n+1-ary relation over the set L×L of pairs
of formulae in the language L. For any element ((a1,b1), . . . ,(an,bn),(an+1,bn+1)) ∈ r we
call (a1,b1), . . . ,(an,bn) the premises of the rule and (an+1,bn+1) its conclusion. A deriva-
tion of a pair (a,b) from a set G of pairs of formulae, given a set R of rules, is understood
to be a tree with (a,b) at the root, each non-leaf node related to its immediate parents by
the inverse of a rule in R, and each leaf node either the conclusion of a zero-premise rule in
R, or an element of G, or of the form (t, t). If we denote the set of elements that are deriv-
able from G in the system above as deriv(G) then theorem 1 states that out(G) = deriv(G).
Note that these operators are closure operators, that is, they satisfy monotony, inclusion and
idempotence.

The reader should note that the out-operator considered here corresponds to the one
Makinson and van der Torre call simple-minded output (38)—it is the least comitting of the
input/output operators. Although quite weak, it has the great virtue that it can be viewed as a
most natural and immediate generalisation of classical logic. More precisely, classical logic
is the special case where the set of norms G is the diagonal relation over L:

Theorem 2 Let G be the diagonal relation over L. Then out(G,a) =Cn(a).

Proof We prove only the left-to-right-direction, the converse is trivial: Suppose b∈ out(G,a).
By compactness for classical consequence there is a set (a1,b1), . . . ,(an,bn) ∈ G such that
a ` a j for 1≤ j ≤ n and

∧n
i=1 bi ` b. Since G is the diagonal over L we have that a j = b j for

1≤ j ≤ n, whence
∧n

i=1 ai ` b. Thus, a `
∧n

i=1 ai ` b so b ∈Cn(a) as desired.

Thus, simple-minded output makes a small step up the ladder of abstraction, substituting
ordered pairs for conditional statements. This has two effects: First, outputs cannot be re-
cycled as inputs, meaning that norms cannot be chained together. Chaining of conditional
obligation is a contentious issue (see e.g. (20; 49; 48; 52)) and it is by no means obvious
that normative implicature is transitive. There are ways to add transitivity on top of simple-
minded output (the reader is referred to the original input/output papers), but it should be
considered a feature, not a bug, that it is not integral to the idiom. Secondly, conditional
norms are not in the general case reflexive. This is very important, and captures an essential
feature of normative reasoning: The whole point of having a logic of norms is to represent
and reason about the potential discrepancy between the actual and the ideal. If conditional
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norms are taken to be reflexive, the actual is always ideal so the distinction collapses. Non-
reflexivity can be seen as a characteristic feature of all forms of conventional generation.
Whatever holds according to a norm holds as a matter of conventionally accepted implica-
ture. Indeed there may be warrant for speaking about non-reflexive logics as on a par with
non-monotonic logics. The latter denotes a broad range of inference patterns that in some
way or other involve assumptions of falsity, which in turn make arguments sensitive to the
absence of information. The former may in a similar spirit be taken to stand for a family of
inference patterns that share the characteristic that they are mediated by convention. Exam-
ples include permissive norms, mandatory norms, norms of etiquette and constitutive norms
(which should also not be construed as reflexive). Simple-minded output has the virtue that
it isolates this feature in its purest form, and makes it easy to track the things that change.
Of course, the operative assumption is that we will learn something useful that we can apply
to more sophisticated versions later.

Having said that, the reader may already find reason to pause at the principles that
simple-minded output does satisfy, in particular the principle of input strengthening (SI).
Uncontroversially, normative reasoning is not monotonic, so input strengthening seems
counter-intuitive. The thing to keep in mind though is that simple-minded output constitutes
a model of prima facie norms only. The whole point of the present paper is to investigate
ways of overriding or suspending such norms. Input strengthening is prima facie valid. In
the absence of evidence to the contrary an obligation that applies to one context also applies
to stronger contexts, but if contrary information can be brought to bear then that inference is
blocked. Thus input strengthening is not simply discarded. When it fails it fails instructively
with reference to a particular context. This is as it should be.

3 Properties of the theory of simple-minded output

3.1 Complementation

The conditions under which a normative system ought to be counted inconsistent is a topic
of much debate in the literature, and no clear consensus seems to have emerged. Yet, this is
an issue pertinent to the matter at hand, since revision—the topic of section 5—is usually
defined in terms of it. I shall later follow suit and define the revision of a set of norms G with
a norm (a,b) as the removal of incompatible material from the consequences of G prior to
the addition of (a,b). It is therefore necessary to take a stand on what ‘contradiction’ should
be taken to mean when applied to norms, and whether ‘incompatible material’ should be
understood in this sense.

In (57) G.H. von Wright, like H. Kelsen (28), takes the coexistence of conflicting norms
from the same source to provide an adequate criterion for the contradictoriness of a code
of norms: The giving of two conflicting norms is the expression of an irrational will; it is
a performative self-contradiction and as such a pure fact that fails to create a norm (20, p.
486). Kelsen says: “To say that a ought to be and at the same time ought not to be is just
as meaningless as to say that a is and at the same time that it is not. A conflict of norms is
just as meaningless as a logical contradiction” (28, p. 205-206). In (1, p. 62) Alchourrón and
Bulygin express the same view: “Generally speaking, a normative system α is inconsistent
in a case Ci (...) if α correlates Ci with two or more solutions in such a way that the conjunc-
tion of these solutions is a deontic contradiction”. Translated into input/output idiom this
criterion deems a code G inconsistent if out(G) contains (a, f ) for some a.



9

It is remarkable that all the above mentioned writers later reject this view. Kelsen (29)
ultimately comes to view logic as simply inapplicable to norms, and therefore to law. C.E.
Alchourrón and E. Bulygin argue that a system of norms that it is impossible to obey might
be unreasonable and its norm-giver blameworthy, but its existence does not constitute a log-
ical contradiction (20, ibid.). Similarly, in (59) von Wright concedes that existing normative
systems may or may not be contradiction-free, and reformulates deontic principles as meta-
norms for consistent norm-giving (20, ibid.).

All continue, to regard the coexistence of conflicting norms as a flaw, though. Yet, if we
regard a normative system as a set of norms that is closed under some notion of entailment,
then there are good reasons, why a system that contains (a, f ) need not be deemed neither
inconsistent nor incoherent. It is common for a code of norms—probably unavoidable if the
code is of any complexity—to regulate two distinct states of affairs separately, which may
nevertheless happen to occur simultaneously. Whether or not two events can occur at the
same time, is usually a matter of contingent fact, and not a possibility that can be ruled out
by stipulation. Say you have volunteered for the local fire brigade and also for the rescue
service in the local Red Cross unit. In case of an avalanche you are obliged to assist the Red
Cross on site, and similarly, in case of a fire you are obliged to assist the fire brigade at that
site. Since it is clearly possible that a fire breaks out at the same time as an avalanche occurs,
and since it is possible for these events to occur at locations far removed from one another,
then in a not too far-fetched scenario you may happen to have taken upon you two incompat-
ible commitments. It is nevertheless clearly not absurd or practically irrational, in any sense
we can make of it, for you to volunteer both for the Red Cross and for the fire brigade. That
an agent cannot, under unhappy circumstances, live up to all his commitments, is something
a code should give us the resources to anticipate, it is not something the code should seek
to prevent. Indeed, one of the things we should expect a formal model of normative systems
to do is precisely to alert us to such conflicts, and the circumstances under which they arise.
Derived norms (a, f ), at least, ought to be read this way. According to this interpretation
the derivability of (a, f ) is a feature, not a bug, and the norm (a, f ) can be regarded as intu-
itively equivalent with the ‘contrapositive’ (t,¬a)—the general prohibition against doing a.1

In order to talk about these issues with a reasonable level of precision, we may call
the norm (a,¬b) the local negation of (a,b), and the norm (¬a,¬b) the global negation of
(a,b). From a lattice-theoretic point of view it is the global negation that is the complement
of the norm. Consider the operations Y and Z defined as follows:

(a,b)Y (c,d) := (a∧ c,b∨d)

(a,b)Z (c,d) := (a∨ c,b∧d)

Since the operations Z and Y are defined by way of boolean conjunction and disjunction
the lattice equalities linking conjunction and disjunction are reflected by Y and Z. Take the
principle of absorption a∨ (b∧a) = a as an example:

(a,b)Y ((a,b)Z (c,d)) = (a,b)Y (a∨ c,b∧d)

= (a∧ (a∨ c),b∨ (b∧d))

= (a,b)

1 The inference from (a, f ) to (t,¬a) is not, however, licensed by any of the input/output systems currently
on offer.
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All the other lattice equalities can be reproduced in a similar manner, and thus 〈L2,Y,Z〉 is
a distributive lattice. Now, for any (a,b) ∈ L2 we have:

( f , t)Y (a,b) = (a∧ f ,b∨ t) = ( f , t)

and

(t, f )Z (a,b) = (t ∨a, f ∧b) = (t, f )

Thus ( f , t) is the top and (t, f ) the bottom element of the lattice (or, in the infinite case, of
its congruence). Now, since

(a,b)Z (a,b)′ = (a∨¬a,b∧¬b) = (t, f ) =⊥

it follows that (¬a,¬b) is the lattice-theoretic complement of (a,b). This complement is
unique, since 〈L2,Y,Z〉 is a distributive lattice (10, chapter 4.13).

This strongly suggests treating G as inconsistent iff (t, f ) /∈ out(G). We can then derive
the welcome property that an inconsistent set of norms coincides with the total relation L2

over L:2

Theorem 3 (t, f ) ∈ out(G) iff out(G) = L2

Hence, just as a set of sentences is consistent iff it does not contain the entire language, a
set of norms, according to the definition above, is consistent iff it does not contain the total
relation.

This criterion—the inclusion of (t, f ) in the system—is similar to one proposed by Peter
Vranas in (52) according to which a set of norms is inconsistent iff it contains an omnivi-
olable norm, that is, if it contains a necessarily violated norm. Conditional norms with a
consistent condition of application are not omniviolable in this sense, since the applicabil-
ity condition may not be satisfied. If it is not, then the obligation is neither violated nor
fulfilled—it simply doesn’t apply. It seems more reasonable to say, as Vranas does, that the
obligation is avoided. Stated differently, even if out(G) contains (a, f ), a may not be true
whence f may not be derivable from out(G) under the prevailing circumstances. Hence, the
system may continue to give consistent directions for other cases than a, so it is not on the
whole inconsistent. It is just a system that flags a as a source of problems—a state of affairs
to be avoided. Truly inconsistent is the system that yields f always, for all states of affairs.
The only norm that does that, the only omniviolable norm, is (t, f ).

This should make it fairly obvious that overall inconsistency is not the right notion to
focus on for purposes of norm-system revision, because the aim of revising G with (a,b) is
to make b consistently applicable to the context described by a. A removal of (t, f ) from G
does not suffice for this purpose, since it is entirely possible to have (t, f ) /∈ out(G) whilst
(a, f ) ∈ out(G) for some a. Removing ( f , f ), on the other hand, would restore consistency
within a, but at the cost of purging inconsistencies from all contexts. But it has just been
argued that one essential service that a model of a normative systems should provide, is
the ability to diagnose potential sources of problems by predicting e.g. that (a, f ). What
we want, therefore, is just local consistency—we want to purge the context a of conflicting
elements, but we do not want the process to spill over into unrelated contexts.

As, the next lemma shows, removing locally inconsistent elements will suffice for over-
all local consistency:

2 Proofs of the lemmas and theorems in this subsection—they are all very easy—can be found in (48).
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Theorem 4 For any a ∈ L, 〈a×L,Z,Y〉 is a sub-algebra of 〈L2,Z,Y〉, and local negation is
the unique complement.

Thus the local negation of (a,b) is the locally unique complement in the sub-lattice of L2

determined by a, whence revision with local negation always restores (exempt a few limiting
cases) consistency to the context expressed by the antecedent of the norm that is scheduled
for addition.

Note that local negation requires attention to limiting cases, for as the next example
shows it does not preserve equivalence modulo out:

Example 1 Consider the two norms (a, t) and (b, t) and assume that a and b are elementary
letters. Both norms have tautologous consequents, and are therefore equivalent modulo out.
Their local negations are (a, f ) and (b, f ). Since a and b are logically independent it follows
that (a, f ) /∈ out((b, f )), so (a, f ) and (b, f ) are not equivalent.

As we shall see in section 5, the non-preservation of equivalence under local negation affects
the revision operator which will be defined via the Levi identity as the removal of the local
negation of the element to be added. Special provisos must therefore sometimes be intro-
duced to hedge against limiting cases. These provisos take the form of appeals to one of the
following properties that give sufficient conditions under which preservation of equivalence
does hold:

Lemma 1 If out((a,b)) = out((c,d)) and 0 b then b≡ d and a≡ c.

Proof Suppose out((a,b)) = out((c,d)). Then (a,b) ∈ out((c,d)). Since 0 b, (a,b) must be
derived from (c,d) using SI, WO or both. It follows that a ` c and d ` b. Conversely, we
have (c,d) ∈ out((a,b)). Moreover 0 d, since d ` b and 0 b. Hence (c,d) must be derived
from (a,b), whence c ` a and b ` d.

Lemma 2 If out((a,b)) = out((c,d)) and a≡ c then b≡ d

Proof Suppose that b is not equivalent to d and that a ≡ c. Then we have out((c,d),a) =
Cn(d) 6=Cn(b) = out((a,b),a), so out((c,d)) 6= out((a,b))

3.2 Deduction properties

Since norm-system revision, or amendment as it shall be called, will be analysed in terms
of consistency preserving additions—this is section 5—it will be expedient to establish a
few results that has to do with reasoning about a code in the presence of additional rules. In
classical logic reasoning in the presence of extra assumptions is summed up by the deduction
theorem which says that a proposition q can be derived from K in the presence of an extra
assumption p iff the proposition p→ q can be derived from K directly. A similar property
holds for norms, and it will be utilised extensively in subsequent sections (proofs can be
found in (48, chap. 4)). We have

Lemma 3 (Easy half of deduction) If (a∧ c,b → d) ∈ out(G) and c ` a then (c,d) ∈
out(G∪ (a,b)).

and the converse
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Lemma 4 (Hard half of deduction ) If (c,d)∈ out(G∪(a,b)) then (a∧c,b→ d)∈ out(G).

In the limiting case where (c,d) ∈ G already (a,b) need not be required for its derivation.
Hence, there need not be any logical relationship between a and c. However, in all other
cases—that is in all cases where (a,b) is a leaf in the derivation of (c,d) from G—we have
that c ` a, and may thus conclude that (c,b→ d) ∈ out(G). To see this, note first that the
antecedent of the root of a derivation will be logically stronger than the body of any other
rule closer to the leaves:

Lemma 5 For each node n : (a,b) in a derivation, write Ln for the set of leaves in the
subtree determined by n. Then, if (c,d) ∈ Ln then a ` c.

Proof By induction on n and the last rule in a derivation. Let n : (a,b) be any node in the
tree and suppose (c,d) ∈ Ln. For the base case we have: If (a,b) is a leaf of the tree, then
(a,b) = (c,d) so c ` a as desired. For the induction step, the cases for EQL and EQR are
trivial. The remaining cases are: For SI, suppose (a,b) is derived from p : (g,h) by SI, then
a ` g. By the induction hypothesis the property holds for p, and thus g ` c. Hence a ` c
as desired. For WO, suppose (a,b) is derived from p : (g,h) by WO. Then a = g. By the
induction hypothesis we have g ` c, so a ` c as desired. For AND, suppose (a,b) is derived
from p : (g,h) and q : (g′,h′) by AND. Then g = g′ = a. By the induction hypothesis we
have g = g′ ` c so a ` c as desired.

The following input-entailment property falls off immediately:

Lemma 6 If (c,d) ∈ out(F ∪ (a,b))\out(F) then c ` a.

Proof Since (c,d) ∈ out(F ∪ (a,b)) = deriv(F ∪ (a,b)) but not in out(F) = deriv(F). It
follows that (a,b) is a leaf in some derivation of (c,d) from F ∪ (a,b). Hence c ` a by
lemma 5.

I shall have occasion to appeal to this later.

3.3 Remainders

In classical revision-theory, a contraction on a set is carried out by intersecting maximally
non-implying subsets, aka. remainders. That is, to remove an element a from a theory A one
considers subsets of A that are such that they do not entail a whereas all proper supersets
do. This has turned out to be a sustainable mathematical idiom, and it is an idea that will
be taken over in this paper. We therefore need to generalise the notion of a remainder to
input/output logic. This is entirely straightforward:

Definition 2 (Remainders sets) out(G)⊥ (a,b) is the set of H such that

1. H ⊆ out(G)
2. (a,b) /∈ out(H), and
3. If H ⊂ I ⊆ G then (a,b) ∈ I

Note that remainders are defined as subsets of the closed set out(G) rather than of the base
G, so we are aiming for a version of theory contraction rather than, in the terminology of
(22), base-contraction. An important property of remainders, as so defined, is that they are
closed under out:
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Lemma 7 If H ∈ out(G)⊥ (a,b) then H = out(H).

Proof Suppose that H ∈ out(G) ⊥ (a,b). We need to show that H = out(H). By inclusion
for out, it suffices to show that (c,d) ∈ H whenever (c,d) ∈ out(H). Suppose therefore
that (c,d) ∈ out(H). By monotony for out we have that out(H) ⊆ out(G), hence (c,d) ∈
out(G). Now, suppose for reductio ad absurdum that (c,d) /∈ H. Then since H ∈ out(G) ⊥
(a,b) and (c,d) ∈ out(G) we know that (a,b) ∈ out(H ∪ (c,d)). But since (c,d) ∈ out(H)
by assumption, we have that out(H) = out(H ∪ (c,d)) so that (a,b) ∈ out(H), contrary to
hypothesis.

Input/output logic also enjoys a compactness property that ensures that a non-implying sub-
set of out(G) (w.r.t. to some norm (a,b)) can always be expanded to a maximally non-
implying subset of G, that is, to a remainder (a proof can be found in (48, chap. 4)):

Lemma 8 (Maximalisability) If (a,b) /∈ F ⊆ out(G) then there is an F+ ⊇ F such F+ ∈
out(G)⊥ (a,b).

Finally, it is possible to establish a principled relation between different sets of remainders:
If F is a subset of out(G) that maximally does not imply (a,b), and F happens not to imply
(a,c), then it is also maximally non-implying w.r.t (a,c). To prove this, we shall need to
appeal to the following property, which mirrors (5, lemma 2.1):

Lemma 9 Let H :=
⋂
(out(G)⊥ (a,b)). Then out(G,a)⊆ out(H ∪ (a,b),a)

Proof Suppose that d ∈ out(G,a). We want to show that d ∈ out(H ∪ (a,b),a). By AND it
suffices to show that b→ d ∈ out(H,a). Note that, b→ d ∈ out(G,a), by WO, since d ∈
out(G,a). Suppose for reductio ad absurdum that b→ d /∈ out(F,a) for some F ∈ out(G)⊥
(a,b). Then, by the maximality of F it follows that b ∈ out(F ∪ (a,b→ d),a), so lemma 4
and 7 yield (a,(b→ d)→ b) ∈ F . Now,

(b→ d)→ b = ¬(b→ d)∨b

= ¬(¬b∨d)∨b

= (b∧¬d)∨b

= b

Hence (a,b) ∈ F , by one application of WO, contradicting F ∈ out(G)⊥ (a,b).

This suffices to establish the above-mentioned relationship:

Lemma 10 If F ∈ out(G) ⊥ (a,b) then F ∈ out(G) ⊥ (a,c) for all (a,c) ∈ out(G) with
(a,c) /∈ F.

Proof Suppose F ∈ out(G) ⊥ (a,b) and (a,c) /∈ F for (a,c) ∈ out(G). It will suffice to
show that whenever F ⊂ F ′ ⊆ out(G) then (a,c) ∈ F . Let F ⊂ F ′ ⊆ out(G). Since F ∈
out(G)⊥ (a,b) we have (a,b)∈ F . But also, since F ∈ out(G)⊥ (a,b) then out(G)⊥ (a,b)
is non-empty so

⋂
(out(G) ⊥ (a,b)) ⊆ F ′. Hence out(G,a) ⊆ out(F ′ ∪ (a,b),a) whence

since (a,c) ∈ out(G) we have (a,c) ∈ F as desired.
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4 Derogation

Although theory revision was first put on the agenda in the work of the philosophers William
Harper (24; 25) and Isaac Levi (31; 32), Alchourrón, Gärdenfors and Makinson (3) are usu-
ally given credit for turning it into a well-defined research programme (56).

The basic idea underlying the AGM paradigm, is to break down the revision of a the-
ory into two steps: First the theory is downsized, or contracted, to just below the threshold
of making it inconsistent with the new data, and then the reduced theory is expanded by
adding the new proposition and taking the closure of the result. This is conceptually very
simple, but from the technical side of things there are certain difficulties to overcome, the
principal one being the following: In general there is more than one way to reduce a theory
so as to make it consistent with a given input. In most cases the result is not unique, and
we obtain a number remainders of the theory to be revised that are all compatible with the
proposition to be added. Furthermore, neither each subset taken alone (called maxichoice
contraction ), nor their common part (full meet contraction) can serve as a reasonable solu-
tion; the former preserves too much, whereas the second retains too little information (4; 6,
p. 323) . The solution devised by Alchourrón et al. is well known; they use a preference
mechanism to select only a subset—intuitively the preferred ones—among the remainders.
Unlike maxichoice and full-meet contraction, the set of remainders scheduled for intersec-
tion is selected, which adds flexibility to the model. The resulting framework is known as
partial meet contraction—the paradigm of revision theory.

Adapting this approach to input/output logic requires us first of all to be explicit about
what a selection function is:

Definition 3 A selection function for a set of norms G, is any function of type 22out(G) 7→
22out(G)

, such that

(a) /0⊂ δ (X)⊆ X if X is a non-empty subset of 2out(G), and
(b) δ (X) = {out(G)} otherwise.

A partial meet derogation operator can now be defined in the usual way as follows:

Definition 4 out(G)− (a,b) =
⋂

δ (out(G)⊥ (a,b)), where δ is a selection function for G.

Intuitively the operation δ chooses the most preferred elements among the set of remainders
of out(G) (w.r.t. the derogandum (a,b)), if there are any. If there are none, δ returns the set
consisting only of out(G). Note that the selection function δ is entirely abstract. That is, we
make no assumptions about how δ selects the remainders. It may of course be fleshed out at
some later point. Various explicitly defined preference relations from the literature (see e.g.
(3; 43; 44; 42)) could be used—some of them are specifically tailored for legal reasoning—
but it makes sense to leave all options open at the outset.

Most of the properties that are characteristic of partial meet derogation, as so defined,
resemble closely the properties that characterise classical contraction—but there are some
interesting new-comers as well:

Theorem 5 Partial meet derogation satisfies the following properties:

D-Closure: out(G)− (a,b) = out(out(G)− (a,b))
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D-Inclusion: out(G)− (a,b)⊆ out(G)
D-Success: If 0 b then (a,b) /∈ out(G)− (a,b)
D-Extensionality: If out((a,b)) = out((c,d)) then out(G)− (a,b) = out(G)− (c,d)
Input Dependence: If (c,d) ∈ out(G)\out(G)− (a,b) then a ` c
Local Recovery: If (c,d) ∈ out(G) and a ` c then (c,d) ∈ out((out(G)− (a,b))∪ (c,b))

Proof We prove only the last two postulates. The remaining proofs can be found in (48). The
proof of Local Recovery is similar to that of lemma 9 with minor modifications: Suppose that
(c,d) ∈ out(G) and that a ` c. We want to show that (c,d) ∈ out((out(G)− (a,b))∪ (c,b)).
By AND it suffices to show that (c,b→ d)∈ out(G)−(a,b). Note that, (c,b→ d)∈ out(G),
by WO, since (c,d) ∈ out(G). Suppose for reductio ad absurdum that (c,b→ d) /∈ H for
some H ∈ out(G) ⊥ (a,b). Then, by the maximality of H it follows that (a,b) ∈ out(H ∪
(c,b→ d)), so lemma 4 and 7 yield (c∧a,(b→ d)→ b) ∈ H. Now,

(b→ d)→ b = ¬(b→ d)∨b

= ¬(¬b∨d)∨b

= (b∧¬d)∨b

= b

Hence (c∧a,b) ∈ H, by one application of WO. Since a ` c it follows that (a,b) ∈ H, con-
tradicting H ∈ out(G) ⊥ (a,b). For Input Dependence, suppose (c,d) ∈ out(G)\ out(G)−
(a,b). We need to show that a ` c. It follows from the supposition that there is an F ∈
out(G) ⊥ (a,b) with (c,d) /∈ F . By F ∈ out(G) ⊥ (a,b) we have (a,b) ∈ out(F ∪ (c,d))
whence a ` c by lemma 6 as desired.

The interpretation of these conditions is mostly straightforward. A-Closure says that
derogation of a norm from a system produces a new system, that is, derogation produces
a set of norms that is closed under the rules that characterise the out-operator. D-Inclusion
precludes the addition of new norms in the process of derogation, D-Success ensures that
the derogandum is no longer in the system after the derogation has been performed (unless
the derogandum is a norm with a tautologous consequent), whilst D-Extensionality says that
derogating equivalent norms (modulo out) from the same code produces the same result—
i.e. only the logical content of a norm, not its particular formulation, affects derogation. The
postulate of Input Dependence is notable for the fact that it lacks a counterpart in classical
AGM-revision theory. It can therefore be regarded as a genuine idiosyncrasy of normative
reasoning. Together with Local Recovery, to which I shall return shortly, it expresses the
locality of normative reasoning. By the locality of normative reasoning I shall mean the fact
that only weaker context than the one described by the antecedent of the norm to be removed
need be taken into consideration in order to remove that norm. Incisions are confined, so to
speak, to the context described by the antecedent of the derogating norm. Local Recovery
expresses a different aspect of essentially the same phenomenon. It is a restricted version of
the recovery postulate from classical revision theory which captures a global notion of the
same property:

AGM-Recovery: A⊆Cn((A−a)∪a) whenever A is a theory.

This is often referred to as the principle of minimal-mutilation, since it prevents unmoti-
vated retraction of elements. Indeed AGM-Recovery keeps incisions into a theory so small
that they can be undone by simply adding the removed sentence (14, p. 43). The intuitive
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plausibility of this property is controversial, though (see e. g. (33; 21; 12) and (32)). Hansson
(23, p. 73) gives the following counterexample (in which theories are interpreted as belief
sets):

I believe that ’Cleopatra had a son’ (φ) and that ’Cleopatra had a daughter’ (ψ), and
thus also that ’Cleopatra had a child’ (φ ∨ψ , briefly κ). Then, I receive information
that makes me give up my belief in κ , and contract my belief set accordingly, form-
ing A−κ . Soon afterwards I learn from a reliable source that Cleopatra had a child.
It seems perfectly reasonable for me to then add κ (i.e. φ ∨ψ) to my set of beliefs
without also reintroducing either φ or ψ .

It is interesting to note, therefore, that the operation of derogation, does not satisfy a corre-
sponding global version of recovery. That is, the following principle is not valid:

Global Recovery: out(G)⊆ out((out(G)− (a,b))∪ (a,b))

Example 2 (Counterexample to Global Recovery) Put G := {(a,b),(a∧c,b)}. Suppose that
a and c are logically distinct and that 0 b. From the latter assumption, it follows by D-
Success and SI that (a,b) /∈ out(G)− (a∧ c,b). Now, suppose for reductio that (a,b) ∈
out((out(G)− (a∧c,b))∪ (a∧c,b)). Then it follows from lemma 6 that a ` c contradicting
the assumption that a and c are logically distinct.3

Local Recovery and Input Dependence are thus aspects of the same phenomenon in
the following sense: Whereas removals of norms from a system only require incisions into
contexts that are weaker than the one described by the antecedent of the derogating norm,
additions of new norms to a system conversely only affects stronger contexts. Hence if the
norm (a,b) is removed from a system out(G), and (c,b) is added back in, where c is logically
weaker than a, then out(G) recovers in all contexts from c up to and including a, but in none
weaker than c.

In philosophical terms, the locality of normative reasoning expressed by Input Depen-
dence and Local Recovery, is a consequence of the anti-naturalism w.r.t. norms that is built
into the input/output idiom: A norm is simply an agreed upon standard of correctness. Such
standards come to exist and pass out of existence in the course of the history of a normative
system—sometimes as a consequence of acts of legislation, sometimes as commandments
of a trusted authority or leader, sometimes as a result of gradually formed societal habits,
customs and traditions, explicit agreement or design (45)—they are not platonic universals
or logical truths. Stated differently, norms are posited by human acts of will, and, in the
words of Kelsen; ‘Norms posited by human acts of will are arbitrary in the genuine signifi-
cation of the word: that is, they can decree any behaviour whatsoever to be obligatory’ (29,
p. 4).

As mentioned earlier, this view is basic to the input/output idiom where the notion of an
arbitrary stipulation is reflected by ordered pairs. Norms are thus not construed as proposi-
tions so there is no logical relationship between the norms as such. Compare the counterex-
ample above with a representation in propositional logic: Put K := {a→ b,a∧c→ b}. Then
Cn(K) contains (a∧ c→ b)→ (a→ b) since (a→ b)→ ((a∧ c→ b)→ (a→ b)) is a tau-
tology. A standard result from classical revision theory tells us that (a∧ c→ b)→ (a→ b)
belongs to every subset of Cn(K) which is maximally such that it does not contain a→ b.

3 The failure of the global version of recovery for contraction of input/output systems was noted in (8).
The authors do not offer an alternative, however.
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This property generalises to all propositions in Cn(K) for arbitrary K, whence classical con-
traction recovers globally: Cn(K)⊆Cn((Cn(K)−(a∧c→ b))∪(a∧c→ b)). In contrast no
statement like (a,b)→ ((a∧ c,b)→ (a,b)) is derivable in input/output logic—indeed such
a statement is not even well-formed. But we have b→ (c→ b) for all consequents of norms
b, whence input/output logic recovers locally.

Note that we could have expressed locality with a single postulate:

Locality: If (c,d) ∈ out(G)\out(G)− (a,b) then (c,b→ d) ∈ out(G)− (a,b)

since this is equivalent to the conjunction of Local Recovery and Input Dependence:

Theorem 6 Locality is equivalent to the conjunction of Local Recovery and Input Depen-
dence

Proof To show that Locality implies Local Recovery, suppose (c,d)∈ out(G) and a` c. The
limiting case where (c,d) ∈ out(G)− (a,b) is trivial, so suppose (c,d) /∈ out(G)− (a,b).
Then (c,b→ d) ∈ out(G)− (a,b) by Locality. Hence (c,d) ∈ out((out(G)− (a,b))∪ (c,b))
by AND. For the converse direction, suppose (c,d) ∈ out(G) \ out(G)− (a,b). Then by
Input Dependence we have a ` c. Hence, by Local Recovery we have (c,d)∈ out((out(G)−
(a,b))∪ (c,b)), whence (c,b→ d) ∈ out(G− (a,b))

Hence, we could have obtained a more compact representation of derogation substituting
Locality for Input Dependence and Local recovery. There is in fact more than one way to
reduce the number of postulates, for we could also have adapted the generalisation from
classical revision theory that substitutes relevance for recovery:

D-Relevance: If (c,d) ∈ out(G)\out(G)− (a,b) then there is an F s. t.
1. out(G)− (a,b)⊆ F ⊆ out(G)
2. (a,b) /∈ out(F), and
3. (a,b) ∈ out(F ∪ (c,d))

The postulate of relevance (of which D-Relevance is a straightforward translation) was first
introduced in classical revision theory by Sven Ove Hansson in (21). Hansson proves the
equivalence of relevance and recovery for contraction on closed sets of sentences, and an
analogous property holds for derogations:

Theorem 7 D-Relevance is equivalent to Input Dependence and Local Recovery in the
presence of D-Closure, D-Success, D-Inclusion and D-Extensionality.

Proof It was proved in (48) that partial meet derogation, as defined in definition 4 is com-
pletely characterised by D-Closure, D-Success, D-Inclusion, D-Extensionality and
D-Relevance. The equivalence therefore follows as a corollary to the representation theorem
8 below.

Notwithstanding this equivalence, D-Relevance does not, in my opinion, give a very in-
formative characterisation of the derogation operation (and the same goes for relevance in
classical revision theory), since it comes very close to simply stating the condition for being
a preferred remainder. Preferred remainders belong to the semantics, or the construction, of
partial meet derogation. Hence the possibility of characterising that construction in terms
of D-Relevance is not very surprising. What we would want, ideally, is a representation
expressed as far as possible in terms of the membership or non-membership of norms as
a consequence of derogation, without appealing directly to auxiliary constructions such as
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maximally non-implying sets and so forth. Local Recovery and Input Dependence live up
to that requirement to a considerable extent. Moreover the separation of concerns between
them yields a clearer picture of the idiosyncrasy of normative reasoning than does the more
compressed postulate of Locality—hence, the axiomatisation above.4

The main result of the present section is the representation theorem that shows the
above-mentioned axiomatisation to give a complete characterisation of derogation. In or-
der to prove it, it will be convenient to appeal to postulates that are not in fact in the list
themselves. These are:

D-Failure: If ` b then out(G) = out(G)− (a,b)

and

D-Vacuity: If (a,b) /∈ out(G) then out(G) = out(G)− (a,b)

As the next pair of lemmas show, these postulates are implied by other members in the list,
taken jointly, so there is no need to expand the set of postulates:

Lemma 11 D-Closure, D-Inclusion, Input Dependence and Local Recovery imply D-Failure

Proof We have out(G)− (a,b) ⊆ out(G) by D-Inclusion. For the other direction suppose
suppose ` b and (c,d) ∈ out(G). We want to show that (c,d) ∈ out(G)− (a,b). Suppose
not. Then, by Input Dependence we have a ` c so (c,d) ∈ out(out(G)− (a,b))∪ (c,b)) by
Local Recovery. By D-Closure, ` b and SI therefore, we have (c,b)∈ out(G)−(a,b). Hence
out(out(G)− (a,b))∪ (c,b)) = out(G)− (a,b), by one more application of D-Closure, so
(c,d) ∈ out(G)− (a,b) as desired.

Lemma 12 D-Inclusion, D-Closure, Input Dependence and Local Recovery imply D-Vacuity.

Proof By D-Inclusion it suffices to show that out(G) ⊆ out(G)− (a,b) on the assumption
that (a,b) /∈ out(G). So suppose (c,d) /∈ out(G)− (a,b). We need to show that (c,d) /∈
out(G). Assume the opposite. Then, by Input Dependence we have a` c. Thus, since (c,d)∈
out(G) and a ` c we have (c,d) ∈ out((out(G)− (a,b))∪ (c,b)) by Local Recovery. More-
over if (a,b) /∈ out(G) it follows that (c,b) /∈ out(G), by SI, whence (c,b) /∈ out(G)− (a,b)
by D-Inclusion. In other words out((out(G)− (a,b))∪ (c,b)) = out(out(G)− (a,b)) so
out(out(G)− (a,b)) = out(G)− (a,b) by D-Closure. Thus, (c,d) ∈ out((out(G)− (a,b))∪
(c,b)) entails that (c,d) ∈ out(G)− (a,b) contrary to assumption.

Necessary is also the following conditional converse of extensionality:

Lemma 13 If out(G) ⊥ (a,b) = out(G) ⊥ (c,d) then out((a,b)) = out((c,d)), whenever
(a,b),(c,d) ∈ out(G).

Proof Suppose for reductio that out(G) ⊥ (a,b) = out(G) ⊥ (c,d) while out((a,b)) 6=
out((c,d)), say out((a,b)) * out((c,d)). By the monotony and idempotence for out we
have (a,b) /∈ out((c,d)). Hence, since (c,d) ∈ out(G) it follows that out((c,d)) can be ex-
panded to a maximal subset F of G such that (a,b) /∈ F . Thus F ∈ out(G) ⊥ (a,b) while
F /∈ out(G)⊥ (c,d) since (c,d) ∈ F , contrary to assumption.

This suffices to prove that partial meet derogation is characterised by the listed postulates:

Theorem 8 Every operation that satisfies D-Closure, D-Inclusion, D-Extensionality, D-
Success, Input Dependence and Local Recovery is a partial meet derogation operation.

Proof In the appendix.
4 Having said that, I shall resort to the use of D-Relevance in the characterisation of revision of sets of

norms in section 6, since a better representation of the revision operation has not been forthcoming.
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4.1 On the relation between contraction and derogation

Before we turn to the operation of amendment, we should pause to record a few facts about
the relationship between derogation, as here defined, and classical contraction, as this re-
lationship may be of some theoretical interest. Theorem 2 shows that input/output logic
generalises classical logic, so it is natural to expect a structured relationship. Knowing the
precise nature of this relationship, could be very useful for carrying results and techniques
over from classical revision theory to the realm of normative reasoning. The results in this
section were presented in (50). They are repeated here, for the sake of expository complete-
ness:

Define a function µ as follows:

Definition 5 Let µ : out(G)⊥ (a,b) 7→ 2L be a function such that µ(F) = F(Cn(a)).

Then µ maps remainders of a normative system to remainders of its output under the input
of the derogandum:

Lemma 14 If F ∈ G⊥ (a,b) then µ(F) ∈ G(Cn(a))⊥ b.

Proof Suppose F ∈ G ⊥ (a,b) and suppose for reduction that µ(F) /∈ G(Cn(a)) ⊥ b. By
definition µ(F) = F(Cn(a)), and since F ∈ G⊥ (a,b) we have F ⊆ G whence F(Cn(a))⊆
G(Cn(a)). There are thus two cases to consider:

1. F(Cn(a)) ` b: By compactness for logical consequence, there is thus a finite set of rules
(a1,b1), . . . ,(an,bn) ∈ F such that ai ∈ Cn(a) for each i ≤ n, and

∧n
i=1 bi ` b. Hence

(a,b) ∈ out(F), by repeated applications of SI, AND and WO, contradicting F ∈ G ⊥
(a,b).

2. There is a B ∈ G(Cn(a)) ⊥ b such that F(Cn(a)) ⊂ B: It follows that there is a d ∈
B \ F(Cn(a)). Since B ⊆ G(Cn(a)) we have (c,d) ∈ G for some c ∈ Cn(a). Clearly
(c,d) /∈ F so (a,b) ∈ out(F ∪ (c,d)) by the membership of F in G⊥ (a,b). Now, since
b /∈ B⊃ F(Cn(a)) it follows that (a,b) /∈ F whence (a,b) ∈ out(F ∪ (c,d))\out(F). By
lemma 6 we therefore have a ` c, and by lemma 4 we have (a,d→ b) ∈ out(F). Hence
F(Cn(a)) ` d→ b so B ` d→ b by monotony for classical logic. Since d ∈ B therefore,
it follows that B ` b, contrary to the assumption that B ∈ G(Cn(a))⊥ b.

This mapping is onto:

Lemma 15 µ is surjective

Proof We want to show that B= µ(F) for every B∈G(Cn(a))⊥ b and some F ∈G⊥ (a,b).
So, suppose that B ∈ G(Cn(a)) ⊥ b and put F := {(c,d) ∈ G : B ` d and c ∈ Cn(a)}. We
first show that B = F(Cn(a)). For the left-in-right inclusion suppose d ∈ B ⊆ G(Cn(a))
then (c,d) ∈ G for some c ∈ Cn(a), so (c,d) ∈ F by the construction of F . It follows that
d ∈ F(Cn(a)). The converse inclusion is immediate from the construction. Next we show
that F ∈ G ⊥ (a,b). Since b /∈ B by the assumption that B ∈ G(Cn(a)) ⊥ b, it follows that
(a,b) /∈ F since B = F(Cn(a)). Moreover, F ⊆ G by the construction of F so it may be
expanded to an F ′ ⊆ G such that F ′ ∈ G⊥ (a,b), by lemma 8 . We show that F(Cn(a)) =
F ′(Cn(a)). The left in right inclusion is immediate. For the converse inclusion, suppose
F ′(Cn(a)*F(Cn(a)). Then there is a d ∈F ′(Cn(a))\F(Cn(a)), whence d /∈B=F(Cn(a)).
It follows that B∪ d ` b so F(Cn(a))∪ d ` b, whence F(Cn(a)) ` d → b. In other words,
we have d→ b ∈Cn(F(Cn(a))), which means that (a,d→ b)∈ out(F)⊆ out(F ′). But then
(a,b)∈ out(F ′) by AND, since d ∈ F ′(Cn(a)) by assumption, contradicting F ′ ∈G⊥ (a,b).
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and one-to-one:

Lemma 16 µ is injective.

Proof We need to show that µ(F) = µ(F ′) implies F = F ′ for F,F ′ ∈ G⊥ (a,b). Suppose
for reductio that F(Cn(a)) = F ′(Cn(a)), but F 6= F ′. Assume without loss of generality,
that (c,d) ∈ (F ′ \F) 6= /0. Then (a,b) ∈ out(F ∪ (c,d)) so a ` c and (a∧ c,d → b) ∈ F ,
whence (a,d→ b) ∈ out(F). Moreover, (a,d) ∈ out(F ′), by SI, since (c,d) ∈ F ′. It follows
that we have F(Cn(a))∪F ′(Cn(a)) ` d and F(Cn(a))∪F ′(Cn(a)) ` d→ b. However, since
F(cn(a) = F ′(Cn(a)) this is tantamount to saying F ′(Cn(a)) ` d and F ′(Cn(a)) ` d → b.
Therefore F ′(Cn(a)) ` b, whence (a,b) ∈ out(F ′), contradicting F ′ ∈ G⊥ (a,b).

Thus, we have the following corollary:

Corollary 1 out(G)⊥ (a,b) and out(G,a)⊥ b are in one-to-one correspondence.

Hence, every derogation operation can be represented by a contraction operation in the fol-
lowing sense:

Theorem 9 For every partial meet derogation operator− there is a partial meet-contraction
operation v such that out(out(G)− (a,b),a) = out(G,a)v b.

Proof Suppose out(G)− (a,b) =
⋂

δ (out(G) ⊥ (a,b)). Choose γ(out(G,a) ⊥ b) to be the
set {B ∈ out(G,a) ⊥ b : µ−1(B) ∈ δ (out(G) ⊥ (a,b))}. It suffices to show that (a,d) ∈⋂

δ (out(G) ⊥ (a,b)) iff d ∈
⋂

γ(out(G,a) ⊥ b). For the left-to-right direction suppose
d /∈

⋂
γ(out(G,a) ⊥ b). Then there is a B ∈ γ(out(G,a) ⊥ b) such that d /∈ B. By the

definition of γ we have that µ−1(B) ∈ δ (out(G) ⊥ (a,b)). Now since d /∈ B it follows
that (a,d) /∈ µ−1(B) so (a,d) /∈

⋂
δ (out(G) ⊥ (a,b)) as desired. For the converse direc-

tion, suppose (a,d) /∈
⋂

δ (out(G)⊥ (a,b)). Then there is an F ∈ out(G)⊥ (a,b) such that
(a,d) /∈F . It follows that d /∈ out(F,a)= µ(F). By lemma 14, µ(F)∈ out(G,a)⊥ b, whence
µ(F)∈ γ(out(G,a)⊥ b), by the definition of γ . It follows that d /∈

⋂
γ(out(G,a)⊥ b), which

completes the proof.

and vice versa:

Theorem 10 For every partial meet contraction operator v, there is a partial meet dero-
gation operator − such that out(G,a)v b = out(out(G)− (a,b),a) there is a partial meet-
contraction operation v such that out(out(G)− (a,b),a) =.

Proof Similar in all its essentials to the preceding one.

Hence,

Corollary 2 An operation − is a partial meet derogation operation iff there is a partial
meet contraction operation v such that out(G,a)v b = out(out(G)− (a,b),a).

The function µ thus provides a convenient bridge that can be used to explore aspects of
norm-system dynamics that have well-understood counterparts in classical revision theory.
See (50) for an example. Another interesting possibility would be to study the priority rela-
tion over out(G) induced by a derogation operation −. The counterpart in classical revision
theory is known as epistemic entrenchment (see e.g. (36), (46), (6)). Epistemic entrench-
ment is interesting for several reasons. First, it yields a constructive definition of partial
meet contraction, and secondly it gives insights into the basic properties of preference that
are determined by the logical properties alone of the items so related. It goes without say-
ing that a similar analysis applied to norms, would be of great value for understanding
the mechanisms of norm-system dynamics that require conflict resolution, such as indeed
predicaments, contrary-to-duty situations and permission. I leave this for future research.
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5 Amendment

A well-known principle called the Levi-identity in (18) after Isaac Levi, identifies a revi-
sion of a theory with respect to a proposition a with the contraction of ¬a followed by the
addition of a (and the subsequent closure of the result). The basic idea is to understand revi-
sion as consistency preserving addition, i. e. revision is construed as a two-step process; first
remove enough of the original theory to ensure that the outcome is consistent with the sched-
uled addition, then add the new element and close the result. Generalising this principle to
input/output logic suggests the following definition:

Definition 6 out(G)u (a,b) := out((out(G)− (a,¬b))∪ (a,b))

I shall call this operation an operation of amendment in order to keep it separate from clas-
sical revision. The reader should note though that the term ‘amendment’ in its legal sense
usually refers to a change made to a previously adopted or pending bill, or to a change made
to a written constitution. Definition 6, in contrast, does not presuppose the existence of any
norm, and, of course, may require such norms, if they do exist, to be suspended. As with
the operator of derogation, the legal term ‘amendment’ may be regarded as a special case
of the corresponding notion defined in this paper, that is, as a special case of norm-system
revision.

Note that definition 6 interprets amendment as locally consistent expansion. Thus,
norm-system revision does not require coherence across contexts generally. This is as it
should be. The point of adding a new norm (i.e. a conditional directive) to a code is to
regulate the circumstances expressed by that condition of application. Nevertheless, as the
postulates of Input Dependence and Local Recovery show, revising a context may require
revision of logically weaker contexts, which will in turn affect logically stronger contexts
(by the rule of input strengthening). However, logically independent contexts will never be
affected. We may see this as an expression of one important idiosyncrasy of normative rea-
soning; it is localised. The locality of normative reasoning, on the analysis given here, is
ultimately due to the fact that norms are construed as arbitrary stipulations—there is no nec-
essary logical relationship between antecedents and consequents of norms, they are simply
decreed to hold. As argued in section 3.1 the negation of a norm should should therefore
be understood as local not global negation, although technically only the latter is a lattice-
theoretic complement in the set of all norms.

The principal properties of amendment as defined in 6 are given by the next theorem:

Theorem 11 u satisfies all of the following:

1. A-Closure: out(G)u (a,b) = out(out(G)u (a,b))
2. A-Inclusion: out(G)u (a,b)⊆ out(G∪ (a,b))
3. A-Success: (a,b) ∈ out(G)u (a,b)
4. A-Consistency: If (a, f ) ∈ Gu (a,b) then b ` f
5. A-Extensionality: If out((a,b))= out((c,d)) and a≡ c then out(G)u(a,b)= out(G)u

(c,d).
6. A-Relevance: If (c,d) ∈ out(G)\out(G)u (a,b), then there is an F such that,

(a) (out(G)u (a,b))∩out(G)⊆ F ⊆ out(G),
(b) (a,¬b) /∈ out(F), and
(c) (a,¬b) ∈ out(F ∪ (c,d))

Proof We prove A-Extensionality and A-Relevance only, all others are entirely obvious:
For A-Extensionality, suppose out((a,b)) = out((c,d)) and a ≡ c. Then by lemma 2 we
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have that b≡ d. Hence out(G)u (a,b) = out((out(G)− (a,¬b))∪ (a,b)) = out((out(G)−
(c,¬d))∪ (c,d)) = out(G)u (c,d), by D-Extensionality together with EQR and EQL. For
A-Relevance, suppose (c,d) ∈ out(G)\out(G)u (a,b). We need to find an F such that;

1. ((out(G)u (a,b))∩out(G)⊆ F ⊆ out(G).
2. (a,¬b) /∈ out(F), and
3. (a,¬b) ∈ out(F ∪ (c,d)).

Since amendment has been defined by the Levi identity we have out(G)u(a,b) = out((G−
(a,¬b))∪ (a,b)). By assumption (c,d) /∈ out(G)u (a,b), so (c,d) /∈ out(G)− (a,¬b) by
the closure properties of the out operator. By D-Relevance and the assumption that (c,d) ∈
out(G) there is thus an F such that

(a) out(G)− (a,¬b)⊆ F ⊆ out(G),
(b) (a,¬b) /∈ out(F), and
(c) (a,¬b) ∈ out(F ∪ (c,d))

It follows from (a) and maximalisability (lemma 8) that F can be extended to an F ′ ∈
out(G)⊥ (a,¬b). By the definition of remainders we thus have that (a,¬b) /∈ F ′ = out(F ′)
by lemma 7, so condition 2 holds. Morover (a,¬b)∈ out(F∪(c,d))⊆ out(F ′∪(c,d)) since
F ⊆ F ′, so condition 3 holds too. It remains to show condition 1: Note first that (a,b) ∈ F ′

if (a,b) ∈ out(G). Suppose not. Then, since F ∈ out(G) ⊥ (a,¬b) it follows that (a,¬b) ∈
out(F ′ ∪ (a,b)). Hence (a,b→ ¬b) = (a,¬b) ∈ F ′, contrary to condition 2. As a result
out(G)∩ (a,b)⊆ F ′. By (a) we therefore have (out(G)− (a,¬b))∪ (out(G)∩ (a,b))⊆ F ′.
Now,

(out(G)− (a,¬b))∪ (out(G)∩ (a,b))

= ((out(G)− (a,¬b))∪out(G))∩ ((out(G)− (a,¬b))∪ (a,b)) by distribution for ∪

= out(G)∩ ((out(G)− (a,¬b))∪ (a,b)) by D-Inclusion

= out(G)∩ (out(G)u (a,b)) by the definition of u

So out(G)∩ (out(G)u (a,b))⊆ out(F ′)⊆ out(G), as desired.

The interpretation of these properties is again fairly straightforward: A-Closure says that
amendment produces a new normative system, that is, it produces a set of norms that con-
tains all the norms it entails. According to A-Inclusion amendment never transcends simple
expansion. This can be seen as a simple relevance criterion; no material that is not implied
by the code and the new norm will be included in the result of amending the code with that
norm. According to A-Success amendment is always effective—the norm scheduled for ad-
dition will always be included in the result. One way to read this is to say that the new norm
always takes priority over norms already in the code. A-Success therefore expresses a sim-
ple kind of lex posterior derogat lex priori principle. A-Consistency says that amendment
always produces a code that is locally consistent with respect to the applicability condition
of the norm to be added, unless that norm is itself locally inconsistent. A-Extensionality says
that amending a code with equivalent norms produces similar results. Note though that this
property is subject to a proviso. Extensionality does not hold simpliciter, as the following
example shows:
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Example 3 Suppose out((a,b)) = out((c,d)) and that a is not equivalent to c. Then ` b and
` d. Hence out(G)u (a,b) = out((out(G)− (a,¬b))∪ (a, t)) = out((out(G)− (a,¬b)) =
out(G)− (a, f ). Similarly out(G)u (c,d) = out(G)− (c, f ). Let a and b be logically in-
dependent and put G := {(a, f ),(b, f )}. Then (a, f ) ∈ out(G)− (c, f ) \ out(G)− (a, f ) so
out(G)u (a,b) 6= out(G)u (c,d).

The example shows that extensionality without the proviso fails for norms with tautolo-
gous consequents. The reason is that the equivalence of such norms is not preserved by
local negation. That is, if b and d are both tautologies we can have out((a,b)) = out((c,d))
and out((a,¬b) 6= out((c,¬d)). The significance of this non-preservation property is easy to
miss. It is an example of one of the many quirks that makes input/output logic different from
classical logic, and an example of one of the more subtle properties of amendment that sur-
faces when there is a construction to back up the postulates. Such a constructive account is
lacking in (8) and may be partly responsible for the fact that the authors put forth the unqual-
ified version of extensionality as a candidate principle for norm-system revision. The anlysis
presented here, in contrast, gives a strong reason not to regard that principle as valid. Turn-
ing finally to A-Relevance, this principle says pretty much the same about amendment as
D-Relevance does about derogation (recall that derogation, according to theorem 7, may be
characterised using D-Relevance instead of Input Entailment and Local Recovery), namely
that an element that does not contribute to the derivation of the local negation of the norm
scheduled for addition will never be eliminated. In other words, change is minimal. In fact
A-Relevance simply passes the responsibility for keeping changes small on to the under-
lying derogation operator, for as it turns out (out(G)u (a,b))∩out(G) = out(G)− (a,¬b)
whenever u is defined by the Levi identity:

Lemma 17 out(G) ∩ out((out(G)− (a,b))∪ (a,¬b)) = out(G)− (a,b)

Proof The right-in-left inclusion follows immediately from D-inclusion and the closure
properties of the out operator. For the converse, suppose (c,d) /∈ out(G)− (a,¬b). We
need to show that (c,d) /∈ out(G)∩out((out(G)− (a,¬b))∪ (a,b)) . If (c,d) /∈ out(G) then
we’re done. We may therefore suppose that (c,d) ∈ out(G) whence it suffices to show that
(c,d) /∈ out((out(G)− (a,¬b))∪ (a,b)). Suppose for reductio ad absurdum the opposite.
Since we have assumed that (c,d) ∈ out(G) \ out(G)− (a,¬b), D-Relevance tells us that
there is an F such that

1. out(G)− (a,¬b)⊆ F ⊆ out(G),
2. (a,¬b) /∈ out(F), and
3. (a,¬b) ∈ out(F ∪ (c,d))

From condition 2 and 3 it follows that a ` c, by lemma 6. Hence, out((out(G)− (a,¬b))∪
(a,b))⊆ out((out(G)− (a,¬b))∪ (c,b)), by SI, so (c,b→ d) ∈ out(G)− (a,¬b) by lemma
4, since (c,d)∈ out((out(G)−(a,¬b))∪(c,b)) by assumption. It follows by condition 1 that
(c,b→ d)∈F . Hence, it suffices by AND to show that (c,¬b→ d)∈F , because then (c,d)∈
out(F) so out(F) = out(F ∪ (c,d)) whence condition 2 contradicts condition 3. Suppose
therefore that (c,¬b→ d) /∈ F . Then (c,¬b→ d) /∈ out(G)− (a,¬b) by condition 1. Since
we have (c,¬b→ d)∈ out(G) from (c,d)∈ out(G) by WO, there is thus an H ∈ δ (out(G)⊥
(a,¬b)) such that (c,¬b→ d) /∈ H. It follows that (a,¬b) ∈ out(H ∪ (c,¬b→ d)). Hence
(a∧ c,(¬b→ d)→¬b) ∈ out(H) by lemma 4. Since a ` c it follows that (a,(¬b→ d)→
¬b) ∈ out(H). Now (¬b→ d)→ ¬b = ¬b so (a,¬b) ∈ H by lemma 7 contradicting H ∈
out(G)⊥ (a,¬b).
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The identity recorded in lemma 17 is a special case of the principle known as the Harper
identity from classical revision theory. This principle was named after William Harper who
proposed that just as revision is definable in terms of contraction by the Levi identity, con-
traction may conversely be definable in terms of revision as that which is common to the
result of the revision and the original set. Lemma 17 shows that the Harper identity holds,
as a derived property, between any operator of amendment u and its underlying derogation
operator. More specifically, when u is defined by the derogation operation − via the Levi
Identity, the Harper identity does indeed produce a contraction operation, and that operation
is just the derogation operation we started with. This is a standard result of classical revision
theory (cf. (19, p. 57)). Its significance is well known, and I shall return to it shortly. Suffice
it for now to note that a similar argument can be made w.r.t. to the Levi identity when we
start with an arbitrarily chosen amendment operation:

Lemma 18 Let u be any operation that satisfies the postulates from theorem 11. Then we
have out((out(G)∩ (out(G)u (a,b)))∪ (a,b)) = out(G)u (a,b).

Proof For the left-in-right inclusion it suffices, by monotony and idempotence for out to-
gether with A-Closure, to show that (out(G)∩ (out(G)u (a,b)))∪ (a,b)⊆ out(G)u (a,b).
But (out(G)∩(out(G)u(a,b)))⊆ out(G)u(a,b), by general set-theory, and (a,b)∈ out(G)u
(a,b), by A-Success, so this is immediate. We prove the converse by contraposition and
reductio ad absurdum: Suppose (c,d) /∈ out((out(G)∩ (out(G)u (a,b)))∪ (a,b)), whilst
(c,d) ∈ out(G)u (a,b). Then it follows that (c,d) /∈ out(G). By A-Inclusion out(G)u
(a,b) ⊆ out(G∪ (a,b)), so (c,d) ∈ out(G∪ (a,b)) \ out(G). Consequently there is a sub-
set F of out(G) such that (c,d) /∈ out(F) and (c,d) ∈ out(F ∪ (a,b)). Suppose that F *
out(G)u (a,b) for every such F . Then since out(G)u (a,b) ⊆ out(G∪ (a,b)) we have
(c,d) /∈ out(G)u (a,b) contrary to our second assumption. There is an F , therefore, such
that F ⊆ out(G)u (a,b) and F ⊆ out(G) with (c,d) ∈ out(F ∪ (a,b)). By monotony for out
it follows that (c,d) ∈ out((out(G)∩ (out(G)u (a,b)))∪ (a,b)), contrary to assumption.

We are now in position to reproduce the central representation theorem for classical revi-
sion: If an amendment operation satisfies the properties listed in theorem 11, then it can be
constructed from some partial meet derogation operator via the Levi identity:

Theorem 12 If an amendment operation u satisfies A-Closure, A-Inclusion, A-Success, A-
Consistency, A-Extensionality and A-Relevance, then it is definable by some derogation op-
eration via the Levi identity.

Proof In the appendix.

Taking stock we have the following situation: Theorem 5 shows that the Levi identity
maps the set of partial meet derogation operators into the set of operators that satisfy the
amendment postulates. Theorem 12 shows that this relation is not merely into but onto:
Every operator that satisfies the amendment postulates can be constructed from some par-
tial meet derogation operator by the Levi identity. Lemma 17 next shows that the Harper
identity—according to which the derogation of a norm (a,b) from a code is identified with
the intersection of that code with its revision with (a,¬b)—provides a way back; what the
former does the latter undoes. Moreover, applying theorem 12 once more, it follows that the
Harper identity is onto too. Hence, derogation and amendment operators are in one-to-one
correspondence with the Harper and Levi identities as inverse bijective maps. This can all
be set out in a more compressed idiom as follows:
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Theorem 13 Let h and l be operations turning an amendment operation into a derogation
operation and vice versa, via the Harper and Levi identities respectively. Then h and l are
both onto.

Proof That l is onto is theorem 12. To show that h is onto suppose ∼ is a partial meet
derogation operator. We need to find a partial meet amendment operator + such that h(+) =
∼. Put + := l(∼), then we have the desired result by lemma 17.

Theorem 14 Let h and l be defined as in theorem 13. Then h and l are inverses.

Proof Let h(l(−)) =v. Then :

out(G)v (a,b) := out(G)∩ (out(G)u (a,¬b)) for some u by def. of h

= out(G)∩out((out(G)− (a,b))∪ (a,¬b)) by the definition of l

= out(G)− (a,b) by lemma 17

so −=∼. Similarly, let l(h(u)) = +. Then:

out(G)+(a,b) := out((out(G)− (a,¬b))∪ (a,b)) for some − by def. of l

= out((out(G)∩ (out(G)u (a,b)))∪ (a,b)) by the definition of h

= out(G)u (a,b) by lemma 18

Hence u=+ and we are done.

What this means is essentially that amendment and derogation are interchangeable id-
ioms. We may view norm-system dynamics in terms of amendment, treating derogation as
the derived notion, or vice versa, it doesn’t matter. Any method for constructing an operator
that satisfies the one list of properties automatically yields a construction for an operator
that satisfies the other list. This is a standard result from classical revision theory. It is nice
to know that it carries over into input/output logic, and it may be taken as confirmation that
the core theory of norm-system dynamics is complete.

6 Sketch of an application: Calculating permissions implicit in a code.

The aim of the present section is to round off this paper by giving an example of how the
theory may be applied. It is hoped that this will suffice to convince the reader of the utility
of the general vantage point provided by the theory. This is a point of view according to
which norms must be analysed in the larger context of the system to which they belong,
rather than, as logicians are wont to, in isolation. Stated differently, it is a salient feature of
the theory set out in the preceding pages that there is no logic of norms without attention
to the overall behaviour of the system, which includes its modes of transformation. It is my
opinion that this gives a more holistic picture—although, to be sure, an idealised one—of the
relationship between a code and the norms it contains, and that it can fruitfully be applied to
the analysis of concepts in analytical jurisprudence and theoretical computer science alike.
As an illustration, the material that follows gives as skeleton theory of what it means for
a permission to be implied by a code of norms. The reader should note that this material
has been published before (cf. (50; 51)). However, since it was precisely the problem of
calculating implicit permission that motivated the investigations in the preceding sections
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to begin with (cf. (48)) a brief recapitulation in the context of the present theory should be
warranted.

Now, it is generally agreed that permitted actions fall under one of two broad kinds; those
that are negatively permitted and those that are positively permitted or permitted by decree.
Negative permission is simple and denotes an absence of a contrary regulation—in criminal
law it is known as the principle nullum crimen sine lege. Now, an interesting subset of such
actions are those that are antithetically permitted, where an antithetically permitted act is
understood as one that cannot be prohibited by a code without making that code contradict a
positive permission. The exact nature of the latter two concepts, and the relationship between
them, is an interesting question to which I shall try to provide an answer.

Let’s say, to begin with, that an explicitly permitted action is one that a code explicitly
pronounces to be permitted or one that is implicit in what has thus been pronounced. This
immediately raises the following problem: What is the nature of this implication relation?
Which actions ought to count as implied, and under what circumstances?

Consider the following example from §8 of the Norwegian personal information act:

§8. Personal information may only be processed by the consent of the registered
person, or if processing is statutorily warranted, or such processing is required in
order to
(a) honour an agreement with the registered person, or to perform a task that accords

with the registered person’s wishes before such an agreement was entered into,
(b) fulfil a legal obligation on the part of the person responsible for handling the

information,
(c) attend to the registered persons vital interests,
(d) perform a task in the interest of the general public,
(e) exercise public authority, or
(f) attend to a justifiable interest that is not outweighed by the regard for the regis-

tered person’s right to privacy.

This pattern is typical: The statute lays down a general prohibition, and then goes on to list a
set of cases for which the prohibition is suspended. In other, words the explicitly permitted
actions function as exceptions to the general ban.

This kind of positive permission may be called exemptions, since what they do is to
override a general prohibition in particular elect cases. Several writers have noticed this fea-
ture, for instance Ross who says: “norms of permission have the normative function only
of indicating, within some system, what are the exceptions from the norms of obligation of
the system” (45, p. 120). Ross is not, however, correct in claiming that permissive norms
necessarily exempt from already existing mandatory norms. Consider for instance constitu-
tional rights. A constitutional guarantee does usually not override a prohibition that actually
exists. Rather, it is meant to reject in advance prohibitions that could conceivably be passed.
We may call this class of permissive norms antithetic permissions since what they do is to
prevent the code from growing in such a manner as to prohibit a contrary course of action.

Now, we wish to analyse permissions in the larger context of a system, i.e. to study
the interplay between permission and mandatory norms against the background of the sum
total of such norms. Hence the proper unit of analysis is a pair 〈G,P〉 consisting of a set
of mandatory norms G and a set of explicitly pronounced permissions P. Both are binary
relations over L. I shall say that an item (a,b) is mandatory or permitted (as the case may be)
according to or in such a code, meaning that b is permitted or mandatory whenever a is true.
It seems natural to analyse the class of permissions I have called exemptions as follows:
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Definition 7 (Exemption) (a,b) is an exemption according to 〈G,P〉 iff (a,¬b) ∈ out(G)\
out(G)− (a,¬d) for some (a,d) ∈ P.

I shall assume for the remainder of this section that the derogation operation in question
is a full meet operation. This is not free of problems though, as the full-meet operation is
very strong. However, as is shown in (51), these problems can be overcome in a way that
preserves all the definitions and relationships that are presented here. The account is there-
fore sound in general outline, and should serve well as an illustration of how norm-system
dynamics can be employed in elucidating concepts of relevance to analytical jurisprudence.

Now, definition 7 casts exemptions as cut-backs on the code required to respect the
explicit permissions in P. More precisely (a,b) is deemed an exemption if the code contains
a prohibition that regulates the state of affairs a by prohibiting b, and (a,¬b) is such that,
unless it is removed, the code will contradict an explicit permission in P. To see how this
works, consider the following example.

Example 4 Put G := {(t,¬p)} and P := {(c, p)}. Think of these norms as a general pro-
hibition against processing personal information and as an exception for express consent
respectively. We have (c,¬p) ∈ out(G) by input strengthening. By D-Success for full meet
derogation, however, (c,¬p) /∈ out(G)− (c,¬p), so (c, p) constitutes an exemption.

Turning now to the concept of antithetic permission, the idea is to see (a,b) as permitted
whenever, given the mandatory norms in G, we can’t forbid b under the condition a without
thereby committing ourselves to forbid, under a condition c that could possibly be fulfilled,
something d which is implicit in what has been explicitly permitted (41). Another way to
put it is to say that antithetic permissions prevent the set of mandatory norms from grow-
ing in such a way as to render explicitly permitted actions forbidden. This checked-growth
perspective may be brought out as follows

Definition 8 (Antithetic permission) (a,b) is antithetically permitted according to 〈G,P〉
iff (a,¬b) /∈ out(G∪ (a,¬b))− (a,d) where (a,d) ∈ P.

The following lemma gives an equivalent representation in terms of the norms in out(G)
exclusively:

Theorem 15 (a,b) is antithetically permitted in 〈G,P〉 iff (a,¬b→ ¬d) ∈ out(G) where
(a,d) ∈ P.

The next example gives a simple illustration of the behaviour of this concept:

Example 5 Put G := {(a,d→ b)} and P := {(a,d)}. Then (a,b) is antithetically permitted
since (a,¬b→ ¬d) ∈ out(G) and (a,d) ∈ P. However, (a,b) is not an exemption, since
(a,b) /∈ out(G).

As the example shows, antithetic permission does not coincide with exemption, but there
is obviously a quite close relationship between them. We are now in position to bring this
relationship out clearly, and a fortiori to answer (in part) the question we started with:

Theorem 16 If (a,b) is antithetically permitted in 〈G,P〉, then it is an exemption in 〈G∪
(a,¬b),P〉.

Proof This is theorem 2 of (51).
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Thus, the analysis shows that antithetically permitted actions are exemptions in a larger
code. Stated differently, antithetic permissions are actions that will be exempted from an
operative ban if added to the code. This agrees well with intuition, and also finds support in
the sources:

This is what happens with constitutional rights and guarantees: the constitution re-
jects in advance certain norm-contents (that would affect basic rights), preventing
the legislature from promulgating this norm-content, for if the legislature promul-
gates such a norm-content, it can be declared unconstitutional by the courts and will
not be added to the system (2, p. 397-398).

Theorem 16 thus spells out, with welcome precision, what it means for a permissive provi-
sion, such as e.g. a constitutional guarantee, to reject a norm in advance, as Alchourrón and
Bulygin put it. Many other deductions can be made from this simple analysis, but this will
have to do for now. The interested reader should consult (50).

Appendix

Proof of theorem 8

Proof We need to show that any operation ‘–’ satisfying the listed properties coincides with
a partial meet derogation operation. That is, we need to show the existence of a selection
function δ such that

out(G)− (a,b) =
⋂

δ (out(G)⊥ (a,b))

We construct the selection function δ , using a familiar technique, as follows:

δ (out(G)⊥ (a,b)) =


{out(G)} if out(G)⊥ (a,b) = /0, otherwise

{F ∈ out(G)⊥ (a,b) : out(G)− (a,b)⊆ F}

We need to show, first of all, that δ is well-defined and that it is a selection function:

Well-definedness. Starting with well-definedness we need to show that δ (out(G) ⊥
(a,b)) = δ (out(G) ⊥ (c,d)) whenever out(G) ⊥ (a,b) = out(G) ⊥ (c,d). So assume that
out(G)⊥ (a,b) = out(G)⊥ (c,d).

In the limiting case that out(G) ⊥ (a,b) = /0 = out(G) ⊥ (c,d), we have δ (out(G) ⊥
(a,b)) = {out(G)}= δ (out(G)⊥ (c,d)), by the first case of the definition of δ , so we may
assume that out(G)⊥ (a,b) 6= /0 6= out(G)⊥ (c,d).

Proceeding on that assumption, we we turn to the case where either (a,b) or (c,d), say
wlog. (a,b), is not in out(G). Then out(G)⊥ (a,b) = {out(G)}, whence out(G)⊥ (c,d) =
{out(G)} as well. Hence, it suffices to show that δ (out(G) ⊥ (g,h)) 6= /0 for any (g,h)
whenever out(G)⊥ (g,h) 6= /0. The proof splits into two cases:

1. Suppose (g,h) /∈ out(G), then out(G)⊆ out(G)− (g,h) by D-Vacuity. Hence out(G) ∈
δ (out(G)⊥ (g,h)) by the second case of the definition of δ , and we are done.
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2. Suppose on the contrary that (g,h)∈ out(G). Since we are assuming that out(G)⊥ (g,h)
is non-empty it follows that 0 h by the properties of out-entailment. By D-Success,
therefore, it follows that (g,h) /∈ out(G)− (g,h), whence, by D-inclusion and lemma 8,
out(G)− (g,h) can be expanded to a subset F of out(G) such that maximally (g,h) /∈
out(F). It follows that F ∈ out(G)⊥ (g,h) and since out(G)− (g,h)⊆ F we also have
F ∈ δ (out(G)⊥ (g,h)). Hence δ (out(G)⊥ (a,b)) = δ (out(G)⊥ (c,d)) as desired.

This completes the limiting cases.
Now, for the principal case where out(G)⊥ (a,b)= out(G)⊥ (c,d) 6= /0 and (a,b),(c,d)∈

out(G), note that F ∈ δ (out(G)⊥ (a,b)) implies out(G)− (a,b)⊆ F by the second case of
the definition of δ . Since out(G)⊥ (a,b) = out(G)⊥ (c,d) and (a,b),(c,d)∈ out(G) it fol-
lows, by lemma 13 that out((a,b)) = out((c,d)), whence out(G)− (a,b) = out(G)− (c,d)
by D-Extensionality. Hence out(G)−(c,d)⊆ F , so F ∈ δ (out(G)⊥ (c,d)) by the definition
of δ . Therefore δ (out(G) ⊥ (a,b)) ⊆ δ (out(G) ⊥ (c,d)). The other direction is similar so
δ is well-defined.

δ is a selection function. To prove that δ is a selection function in the sense of defini-
tion 3, we need to show that /0⊂ δ (out(G)⊥ (a,b))⊆ out(G)⊥ (a,b) whenever out(G)⊥
(a,b) 6= /0, and that δ (out(G) ⊥ (a,b)) = {out(G)} otherwise. The is immediate from the
first case of the definition of δ . For /0 ⊆ δ (out(G) ⊥ (a,b)) we have already shown that
this holds whenever out(G) ⊥ (g,h) 6= /0. The remaining case where out(G) ⊥ (g,h) = /0 is
again immediate from the first case of the definition of δ . It only remains to show therefore,
that δ (out(G)⊥ (a,b))⊆ out(G)⊥ (a,b), which is immediate from the second case of the
definition of δ .

For out(G)− (a,b) =
⋂

δ (out(G)⊥ (a,b)). Finally, we need to show that out(G)−
(a,b) =

⋂
δ (out(G)⊥ (a,b)). There are two cases to consider:

(a) Suppose out(G) ⊥ (a,b) = /0: Then
⋂

δ (out(G) ⊥ (a,b)) = out(G), by the definition
of δ , whence out(G)− (a,b)⊆ out(G) =

⋂
δ (out(G)⊥ (a,b)) by D-Inclusion. For the

converse inclusion, note that out(G) ⊥ (a,b) = /0 implies ` b. Hence out(G)− (a,b) =
out(G) by D-Failure, and therefore

⋂
δ (out(G)⊥ (a,b)) = out(G)⊆ out(G)− (a,b) as

desired.
(b) Suppose out(G) ⊥ (a,b) 6= /0: Since F ∈ δ (out(G) ⊥ (a,b)) iff F ∈ out(G) ⊥ (a,b)

and out(G)− (a,b) ⊆ F , the inclusion out(G)− (a,b) ⊆
⋂

δ (out(G) ⊥ (a,b)) follows
immediately from the second case of the definition of δ . For the converse inclusion
suppose (c,d) ∈ out(G) \ out(G)− (a,b). We need to find an F ∈ δ (out(G) ⊥ (a,b))
such that (c,d) /∈ F . Since (c,d) ∈ out(G) \ out(G)− (a,b), we have a ` c by Input
Dependence, whence (c,d) ∈ out((out(G)− (a,b))∪ (c,b)), by Local Recovery. From
lemma 4 it follows that (c,b→ d) ∈ out(G)− (a,b). By SI and D-Closure, therefore,
we have (a,b→ d) ∈ out(G)− (a,b), whence (a,¬b→ d) /∈ out(G)− (a,b) by another
application of D-Closure together with AND.Therefore (a,b∨ d) /∈ out(G)− (a,b) by
EQR, whence out(G)−(a,b) can be extended to a set F ∈ out(G)⊥ (a,b∨d) by lemma
8. Since F ∈ out(G)⊥ (a,b∨d) we have (a,b∨d) /∈ F , whence (a,d) /∈ F by WO and
(c,d) /∈ F by SI. Moreover, since (a,b∨d) /∈ F we also have (a,b) /∈ F , again by WO,
so F ∈ out(G) ⊥ (a,b) by lemma 10. Taking stock we have F ∈ out(G) ⊥ (a,b) and
(c,d) /∈ F , so the proof is complete.

This completes the proof.
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Proof of theorem 12

Proof It suffices to find a partial meet derogation operation which yields u via the Levi
identity. Let δ be defined as follows:

δ (out(G)⊥ (a,¬b)) =


{out(G)} if out(G)⊥ (a,¬b) is empty, otherwise

{F ∈ G⊥ (a,¬b) : (out(G)u (a,b))∩out(G)⊆ F}

We need to check that δ is a selection function and that it is well-defined:

Well-definedness. We need to show that δ (out(G)⊥ (a,b))= δ (out(G)⊥ (c,d)) when-
ever out(G)⊥ (a,b) = out(G)⊥ (c,d). All the limiting cases are similar to theorem 8. For
the principal case where out(G) ⊥ (a,b) 6= /0 and (a,b),(c,d) ∈ out(G) we reason as fol-
lows: Since out(G)⊥ (a,b) = out(G)⊥ (c,d), we have out((a,b)) = out((c,d)) by lemma
13. Moreover, since out(G) ⊥ (a,b) 6= /0 we also have 0 b, whence a ≡ c by lemma 1. By
A-Extensionality it follows that out(G)u (a,b) = out(G)u (c,d), so δ (out(G)⊥ (a,b)) =
δ (out(G)⊥ (c,d)) as desired.

δ is a selection function. To show that δ is a selection function, it suffices to show that
δ (out(G) ⊥ (a,¬b)) 6= /0, whenever out(G) ⊥ (a,¬b) 6= /0, since, as is easy to check, all
other cases are similar to theorem 8. In other words, we need to show, on the assumption
that δ (out(G) ⊥ (a,¬b)) 6= /0, that there is an F ∈ out(G) ⊥ (a,¬b) such that (out(G)u
(a,b))∩ out(G) ⊆ F . Clearly (out(G)u (a,b))∩ out(G) ⊆ out(G), so it suffices to show
that (a,¬b) /∈ out(G)u (a,b), because then (a,¬b) /∈ (out(G)u (a,b))∩out(G) so this set
can be extended to an F ∈ out(G)⊥ (a,¬b) by lemma 8. Suppose for reductio ad absurdum
that (a,¬b) ∈ out(G)u (a,b). Then since (a,b) ∈ out(G)u (a,b) by A-Success it follows
that (a, f ) ∈ out(G)u (a,b) by AND. By A-Consistency therefore b ` f whence ` ¬b. But
then out(G)⊥ (a,¬b) = /0 contrary to assumption.

Finally we verify the identity

out(G)u (a,b) = out(
⋂

δ (out(G)⊥ (a,¬b))∪ (a,b))

As a mnemonic device put;

out(G)uδ (a,b) := out(
⋂

δ (out(G)⊥ (a,¬b))∪ (a,b))

We thus need to prove that out(G)uδ (a,b) = out(G)u (a,b). We split the proof into two
mutually exclusive and jointly exhaustive cases:

(a) Suppose b is inconsistent: Then we have ` ¬b, so
⋂

δ (out(G) ⊥ (a,¬b)) = out(G)
whence out(G)uδ (a,b) = out(G∪ (a,b)) by the definition of uδ . It suffices to show,
therefore, that out(G∪ (a,b)) = out(G)u (a,b). The right-in-left is is just A-Inclusion.
For the converse we need only show that out(G) ⊆ out(G)u (a,b), since we then
have out(G)∪ (a,b) ⊆ out(G)u (a,b) by A-Success, whence out(out(G)∪ (a,b)) ⊆
out(out(G)u (a,b)), by monotony for out, so out(G∪ (a,b)) ⊆ out(G)u (a,b) by the
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closure properties of the out operator together with A-Closure. Now, by general set-
theory out(G)⊆ out(G)u (a,b) whenever out(G)\out(G)u (a,b) = /0, so it suffices to
show the latter. Suppose for reduction that (c,d)∈ out(G)\out(G)u(a,b). Then, by A-
Relevance there is an F ⊆ out(G) such that (a,¬b) /∈ out(F). However b is inconsistent
so ` ¬b contradicting (a,¬b) /∈ out(F). Therefore out(G)\ out(G)u (a,b) = /0, which
completes the case.

(b) In the principal case where b is consistent we argue for each direction of the desired
identity separately:

[⇒]: We wish to prove that out(G)u (a,b) ⊆ out(G)uδ (a,b). By the definition of δ

we have out(G)∩(out(G)u(a,b))⊆
⋂

δ (out(G)⊥ (a,¬b)), from which it follows that
(out(G)∩(out(G)u(a,b)))∪(a,b)⊆

⋂
δ (out(G)⊥ (a,¬b))∪(a,b). By monotony for

out, therefore, we have out((out(G)∩ (out(G)u (a,b)))∪ (a,b)) ⊆ out(
⋂

δ (out(G) ⊥
(a,¬b))∪ (a,b)), which, by the definition of out(G)uδ (a,b) implies out((out(G)∩
(out(G)u(a,b)))∪(a,b))⊆ out(G)uδ (a,b). By lemma 18 it thus follows that out(G)u
(a,b)⊆ out(G)uδ (a,b), as desired.

[⇐]: We wish to show that out(G)uδ (a,b)⊆ out(G)u (a,b), that is, we want to show
that out(

⋂
δ (out(G)⊥ (a,¬b))∪(a,b))⊆ out(G)u (a,b). By monotony for out and A-

Closure it suffices to demonstrate that
⋂

δ (out(G)⊥ (a,¬b))∪ (a,b)⊆ out(G)u (a,b).
Now, (a,b) ∈ out(G)u (a,b), by A-Success, so we need only show that

⋂
δ (out(G) ⊥

(a,¬b))⊆ out(G)u (a,b). The argument proceeds by contraposition: Suppose (c,d) /∈
out(G)u(a,b). In the limiting case where (c,d) /∈ out(G) we have (c,d) /∈

⋂
δ (out(G)⊥

(a,¬b)) ⊆ out(G) so we are done. So, suppose (c,d) ∈ out(G). Then (c,d) ∈ out(G)\
out(G)u (a,b). By A-Relevance there is an F such that

1. out(G)∩ (out(G)u (a,b))⊆ F ⊆ out(G)
2. (a,¬b) /∈ out(F), and
3. (a,¬b) ∈ out(F ∪ (c,d)).

By condition 1 and 2 and lemma 8 it follows that F can be extended to an F ′ ∈ out(G)⊥
(a,¬b). By condition 3 it follows that (c,d) /∈ F ′, and by 1 again it follows that out(G)∩
(out(G)u (a,b)) ⊆ F ′. Hence, F ′ ∈ δ (G ⊥ (a,¬b)), whence (c,d) /∈

⋂
δ (out(G) ⊥

(a,¬b)) = out(G)uδ (a,b) as desired.

This completes the proof

Acknowledgements This work was partially funded by the Semicolon project supported by
the Norwegian Research Council, contract no. 183260.

References

1. C. E. Alchourrón and E. Bulygin (1971) Normative systems. Volume 5 of Library of
exact philosophy. Springer.

2. C. E. Alchourron and E. Bulygin (1981) The expressive conception of norms. In:
Hilpinen (ed.) New studies in deontic logic. D. Reidel publishing company.

3. C. Alchourron and D. Makinson (1981) Hierarchies of regulations and their logic. In:
Risto Hilpinen (ed.) New studies in deontic logic. D. Reidel publishing company.



32

4. C. E. Alchourron and D. Makinson (1982) On the logic of theory change: Contraction
functions and their associated revision functions. Theoria, vol. 48, pp. 14-37.
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