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Abstract The topic of study in the present paper is the class of RDF homomorph-
isms that substitute one predicate for another throughout a set of RDF triples, on
the condition that the predicate in question is not also a subject or object. These
maps turn out to be suitable for reasoning about similarities in information content
between two or more RDF graphs. As such they are very useful e.g. for migrating
data from one RDF vocabulary to another. In this paper we address a particular in-
stance of this problem and try to provide an answer to the question of when we are
licensed to say that data is being transformed, reused or merged in a non-distortive
manner. We place this problem in the context of RDF and Linked Data, and study the
problem in relation to SPARQL construct queries.
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1 Introduction

As yet, the World Wide Web shows a bias towards getting the information to flow, at the
expense of maintaining the integrity of the circulated information. Maintaining integrity
is usually recognised as a very real and increasingly acute need, though. Take public
sector information: open public sector information is a valuable national resource, and
there is widespread agreement that dissemination promotes transparent and account-
able government, improves quality of service, and in general serves to maintain a well-
informed public. Yet, whilst the political pressure for reusable public sector information
is building momentum, as witnessed e.g. by the European Public Sector Information Dir-
ective of 2003, governments as suppliers and authoritative sources of information on the
Web must nevertheless acknowledge the challenges related to maintaining the primary
nature of its information. This points to a general tension between two fundamental re-
quirements of the data-oriented Web: Keep the data freely flowing, but shepherd the data
into sanctioned use. In the present paper we shall place this problem in the context of
RDF and Linked Data, and study it in relation to SPARQL construct queries.

Example 1. The Cultural Heritage Management Office in Oslo is the City of Oslo’s ad-
viser on questions of cultural conservation of architecturally and culturally valuable
buildings, sites and environments. It maintains a list of protected buildings, known as
‘the yellow list’, which has been transformed to RDF and published as Linked Data [12].
A small excerpt is given below:

? This paper is an extended version of [11, 13].



<http://sws.ifi.uio.no/gulliste/kulturminne/208/5/6643335/597618>
rdf:type gul:Kontor ;
hvor:gateadresse "Akersgata 44" ;
hvor:postnummer "0180" ;
geo:long "10.749" ;
geo:lat "59.916" .

Note that there is no explicit representation of city or country, and no grouping of similar
data. Suppose now that we wish to lift all available information about culturally valuable
buildings in Norway to the national level. We do so by adding Oslo and Norway as parts
of the address data. Also, we add types to buildings by linking to the relevant class from
the CIDOC CRM standard for cultural heritage information (http://www.cidoc-crm.org/).
For heuristic purposes we also group geographical information and address information
respectively around suitably typed nodes:

CONSTRUCT { ?x rdf:type ?y, cidoc:E25.Man-Made_Feature ;
vcard:adr [ rdf:type vcard:Address ;

vcard:street-address ?street ;
vcard:zip-code ?code ;
vcard:locality geonames:3143242 ; # Oslo
vcard:country-name "Norway"@en

] ;
vcard:geo [ rdf:type geo:Point ;

geo:lat ?lat ;
geo:long ?long

]
}

WHERE{ ?x rdf:type ?y ;
hvor:gateadresse ?street ;
hvor:postnummer ?code ;
geo:lat ?lat ;
geo:long ?long .

}

The structural change to the data caused by the construct query is rather thoroughgoing
and extensive. Yet, there is still a principled relationship between structural elements of
the two graphs, e.g. the property hvor:gateadresse morphs into the sequence of proper-
ties vcard:adr, vcard:street-address. Moreover, the pairs of resources that are linked by
hvor:gateadresse in the former graph remain linked by vcard:adr, vcard:street-address
in the latter graph, and no other pairs are similarly related. Indeed, the transforma-
tion can easily be seen to be systematic in the sense that all pairs related in the same
manner in the source graph are transformed uniformly in terms of the same structural
element in the target graph. It is also non-distortive in the sense that no other pair of
resources are so related. Contrast with the case in which we replace hvor:postnummer

with vcard:locality, whilst keeping everything else as-is. We would then not be able to
distinguish between cities and zip-codes in the target graph, and would in that sense
have distorted the information from the source.

The purpose of the present paper is to give these intuitions mathematical content.
That is, we wish to formulate a criterion to sort conservative from non-conservative ways
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of transforming data. Since we take construct queries as our paradigm of RDF trans-
formation, this means sorting conservative from non-conservative construct queries. It
is important to note that the uniformity and non-distortiveness criteria we shall propose
are purely structural, and do not heed the semantics of the vocabulary elements involved.
To the question ‘what makes the chain vcard:adr, vcard:zip-code an adequate represent-
ation of hvor:gateadresse?’ the only answer is ‘because somebody wishes it to be so’.
What our criteria have to offer is thus nothing more than a clear notion of what you are
rationally committed to, in terms of the structure of the target graph, once you have
made your choice of representatives for elements of the source graph. We will do so by
studying a class of RDF homomorphisms that substitutes one edge for another through-
out a set of RDF triples, subject to the condition that the edge in question is not also a
vertex.

The paper is organised as follows: Section 2 defines the general concept of an RDF ho-
momorphism, and distinguishes the subset of conditional edge-substitutions mentioned
above. We shall call them p-maps. Section 3 recapitulates the basic syntax and semantics
of the SPARQL query language. Section 4 defines the notion of a bounded p-map and ar-
gues that it gives an adequate criterion of conservativeness. Section 5 generalises the
conservativeness criterion to handle more sophisticated construct queries, e.g. that of
Example 1. Section 6 presents essential results on the computational properties of com-
puting p-maps, whilst Section 7 closes with a summary and a few pointers to future lines
of research.

Related Work. Our homomorphisms differ from those of [1, 2] which essentially rename
blank nodes in order to mimic the semantics of RDF as defined in [6]. To the best of
our knowledge, our particular notion of RDF homomorphism, and the use of it, is novel.
Considered as an embedding of one graph into another a p-map can be viewed in two
different ways which, although they amount to the same formally, give rather different
gestalts to the central issue. Looked at from one angle, our problem (i.e. embedding a
source into a target) resembles data exchange: Given one source of data marked up in
one way, one wants to migrate the data to some target repository in a way that conforms
to the target’s schema. Yet, it differs from the problem studied in [4] in that our setup
takes the target to be fixed and possibly non-empty. Looked at from another angle, the
problem concerns how to extend an RDF graph conservatively. More specifically, it con-
cerns the problem of how to ensure that a transformation of source data into a target
repository does not interfere with the assertive content of the source. Yet, it is unlike
logic-based conservative extensions [5, 7, 8] in that the logical vocabulary is being re-
placed as the source is ‘extended’ into the target. As such bounded p-maps may also have
a role to play in data fusion, which is defined as “the process of fusing multiple records
representing the same real-world object into a single, consistent, and clean representa-
tion” [3].

2 RDF Graphs and RDF Homomorphisms

Let U , B and L be pairwise disjoint infinite sets of URI references, blank nodes and
literals, respectively, and let U denote the union of these sets. An RDF triple is a member
of T := (U ∪ B) × U × U . We shall write RDF triples as 〈a, p, b〉 and say that a and b are



vertexes, and p the edge of the triple. An RDF graph is a finite set of RDF triples. The
vocabulary of an RDF graph G is the set UG = VG ∪ EG, where VG is the set of vertexes
and EG the set of edges in G. Note that VG and EG need not be disjoint—a matter of some
importance as we shall see later. πi(t) denotes the i-th element of the tuple or sequence
t.

Definition 1. An RDF homomorphism of RDF graph G to RDF graph H is a function h :

UG −→ UH which induces a function h : G −→ H such that h(〈a, p, b〉) = 〈h(a), h(p), h(b)〉 ∈
H.

Definition 2. A p-map h : G −→ H is an RDF homomorphism h : G −→ H where
h(u) = u for all u ∈ VG.

Thus, a p-map is an RDF homomorphism in which the only elements that are allowed to
vary are edges: If h : G −→ H is an RDF homomorphism between RDF graphs G and
H, then h(g) ∈ H for all triples g ∈ G, while if h is a p-map, then 〈a, h(p), b〉 ∈ H for all
triples 〈a, p, b〉 ∈ G. This is a natural class of homomorphisms to study for our purposes
since edges are typically vocabulary elements, while vertexes contain the “real” data.
Note, though, that the definition of a p-map is not without subtleties, given that a single
element in an RDF graph may be both a vertex and an edge:

Proposition 1. Let h be a p-map of G and let 〈a, p, b〉 be any arbitrarily chosen triple in
G. Then h(〈a, p, b〉) = 〈a, p, b〉 whenever p ∈ VG.

3 Syntax and Semantics of SPARQL

To make this paper reasonably self-contained, we introduce a minimum of SPARQL syntax
and semantics, considering only the select-project-join fragment. For a complete exposi-
tion of SPARQL, consult e.g. [1, 9, 10].

Assume the existence of a set of variables V disjoint from U . A SPARQL graph pattern
is defined recursively as follows:

Definition 3. A SPARQL graph pattern S is either a triple pattern t in (V ∪ U) × (V ∪
U)× (V ∪ U ∪ L), or a conjunction S1&S2 of SPARQL graph patterns.

According to this definition SPARQL graph patterns do not contain blank nodes. As shown
in [1] it is easy to extend the definition in this respect, but as blank nodes behave like
variables in select queries, we shall not care to do so. We use var(S) to denote the set of
variables occurring in a set of triples S, and varp(S) to denote those occurring as edges,
i.e. in the second element of triples.

Definition 4. A conjunctive SPARQL query, or just ‘select query’, is a pair 〈S,x〉, where
S is a SPARQL graph pattern and x a subset of var(S).

A variable mapping is a partial function µ : V −→ U that extends in the natural way to
a function on triples which respects RDF triple grammar, i.e. µ(S) ⊆ T for any triple
pattern S. The domain of a function f is denoted dom(f), and the range by ran(f). The
semantics of the select-project-join fragment of select and construct SPARQL queries can
now be given by the following series of definitions, modelled after [1, 9]:



Definition 5. µ1 and µ2 are compatible variable mappings if for every x ∈ dom(µ1) ∩
dom(µ2) we have µ1(x) = µ2(x).

Definition 6. Let Ω1 and Ω2 be sets of variable mappings. We define the join of Ω1 and
Ω2 as Ω1 ./ Ω2 := {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 and µ2 compatible}.

Definition 7. The evaluation of S over an RDF graph G, written JSKG, is

1. {µ | dom(µ) = var(t) and µ(t) ∈ G}, if S is a triple pattern t,
2. JS1KG ./ JS2KG, if S is a conjunction S1&S2

Definition 8. The answer to a query 〈S,x〉 over a graph G, written 〈S,x〉 (G), is the set
{µ(x) | µ ∈ JSKG}.

Definition 9. A SPARQL template is a SPARQL graph pattern in which blank nodes may
occur as vertexes.

Definition 10. Let C be a SPARQL template, S a SPARQL graph pattern, G an RDF
graph, and blank(T ) be the set of blank nodes occurring in a set of triples T . We define
the set of renaming functions {ρµ | µ ∈ JSKG} relative to C and S as follows:

– for every ρµ, dom(ρµ) = blank(C) and ran(ρµ) ⊆ (B \ blank(G)),
– every ρµ is injective, and
– for all µ1, µ2 ∈ JSKG, if µ1 6= µ2, then ran(ρµ1

) 6= ran(ρµ2
).

Definition 11. A SPARQL construct query, or just ‘construct query’, is a pair 〈C, S〉,
where C is a SPARQL template and S a SPARQL graph pattern such that var(C) ⊆ var(S).
The answer to a construct query 〈C, S〉 over an RDF graph G, written 〈C, S〉 (G), is the
RDF graph ∪µ∈JSKG(µ(ρµ(C)).

We end this section with a lemma that links the principal notions introduced so far.
It shows, essentially, that answers to queries and evaluations of SPARQL patterns are
interchangeable idioms for talking about transformations of RDF graphs:

Lemma 1. Let G and H be RDF graphs, and h any function from UG to UH . Then,

1. 〈S,x〉 (G) ⊆ 〈h(S),x〉 (H) iff JSKG ⊆ Jh(S)KH .
2. 〈h(S),x〉 (H) ⊆ 〈S,x〉 (G) iff Jh(S)KH ⊆ JSKG.

Proof. The claim follows immediately from Definition 8 and the fact that dom(h)∩ V = ∅,
whence var(S) = var(h(S)). ut

4 Degrees of Conservativeness

Having assembled the requisite preliminaries, we turn to the problem of analysing the
notion of a conservative construct query. We shall limit the analysis in this section to the
simple case where the query transforms RDF triples to RDF triples. Let G be any RDF
graph. As a tentative characterisation we may say that a construct query is conservative
if applied to G it evaluates to a graph that conservatively transforms the sub-graph of G
that matches the pattern in the SELECT clause. This pushes the question back to what it



means for an RDF graph to be a conservative transformation of another. As the reader
may suspect already, we shall take the existence of a particular kind of p-map between
two graphs to provide a sufficient condition. As homomorphisms, p-maps in general re-
flect the structure of the source in the target. A simple consequence of this is that queries
over the source can be translated to queries over the target without loss of tuples in the
result set:

Theorem 1. Let G and H be RDF graphs, h : G −→ H a p-map, and S a SPARQL pattern
such that varp(S) = ∅. Then 〈S,x〉 (G) ⊆ 〈h(S),x〉 (H).

The existence of a p-map between the source and the target graph may thus be taken
to account for the systematicity of a construct query, as alluded to in Section 1. It does
not account for non-distortiveness for which we also need to reflect the structure of the
result back into the source. We shall consider three ways of doing that, represented by
bounds on p-maps:

Definition 12. A p-map h : G −→ H is bounded, and called a p1-, p2- or p3-map, re-
spectively, if it satisfies one of the following conditions; for all a, p, b ∈ U :

〈a, h(p), b〉 ∈ H ⇒ 〈a, p, b〉 ∈ G (p1)

〈a, h(p), h(b)〉 ∈ H or 〈h(a), h(p), b〉 ∈ H ⇒ 〈a, p, b〉 ∈ G (p2)

〈h(a), h(p), h(b)〉 ∈ H ⇒ 〈a, p, b〉 ∈ G (p3)

As we shall see, each bound reflects a different aspect of the structure of the target in
the source. It is easy to check that (p1) is strictly stronger than (p2), and that (p2) is
strictly stronger than (p3). To be sure, there are other bounds, but these are particularly
simple and natural. We shall need the following lemma:

Lemma 2. If varp(t) = ∅ and 〈t,x〉 (G) 6= ∅ for a triple pattern t, then π2(h(t)) = h(π2(t))

for any p-map h.

Turning now to condition (p1) we obtain the converse of Theorem 1:

Theorem 2. If 〈S,x〉 (G) 6= ∅, varp(S) = ∅ and h is a p1-map h : G −→ H, then
〈h(S),x〉 (H) ⊆ 〈S,x〉 (G).

Proof. Assume the conditions of the theorem hold. By Lemma 1 it suffices to show that
Jh(S)KH ⊆ JSKG. The proof proceeds by induction on the complexity of S. For the base
case, suppose S is a triple pattern t and that µ ∈ Jh(t)KH . By Definition 7(1) it follows
that µ(h(t)) ∈ H. By the suppositions of the theorem we have varp(t) = ∅ and 〈t,x〉 (G) 6=
∅, whence Lemma 2 yields π2(h(t)) = h(π2(t)) = h(p) for some p ∈ π2(G). Therefore
µ(h(t)) = 〈a, h(p), b〉 ∈ H for some a, b, whence 〈a, p, b〉 ∈ G since h is a p1-map. By
Definition 7(1) dom(µ) = var(h(t)) = var(t), so µ ∈ JtKG as desired. For the induction step,
assume the property holds for simpler patterns, and consider S = Sb&Sc such that the
suppositions of the theorem hold, and such that µ ∈ Jh(Sb&Sc)KH . It is easy to check that
Jh(Sb&Sc)KH = Jh(Sb)&h(Sc)KH , whence µ ∈ Jh(Sb)KH ./ Jh(Sc)KH , by Definition 7(2). It
follows from Definition 6 that µ = µb∪µc for compatible µb and µc such that µb ∈ Jh(Sb)KH
and µc ∈ Jh(Sc)KH . Now, since 〈Sb&Sc,x〉 (G) 6= ∅ and varp(Sb&Sc) = ∅, by the supposition
of the case, we have 〈Sb,y〉 (G) 6= ∅ and varp(Sb) = ∅ for y such that yi ∈ dom(µb) for



all yi ∈ y and similarly for Sc. Therefore the induction hypothesis applies, so µb ∈ JSbKH
and µc ∈ JScKH by Lemma 1. We have already assumed that µb and µc are compatible, so
µb∪µc ∈ JSbKG ./ JScKG = JSb&ScKG by Definition 7(2). Since µb∪µc = µ, we are done. ut

Theorem 1 and Theorem 2 show that p1-maps induces a transformation between
RDF graphs that is exact in the sense that the diagram in Figure 1 commutes. That
is, whatever answer a query Q yields over G, h(Q) yields precisely the same answer over
H. Interestingly, the converse is also true, if a function induces an, in this sense, exact
transformation between graphs, then it is a p1-map:

Theorem 3. Let h be any function from U to itself. If for all SPARQL patterns S we have
〈S,x〉 (G) = 〈h(S),x〉 (H), then h is a p1-map of G to H.

Proof. The proof is by induction on the complexity of S. The induction step is easy, so we
show only the base case where S is a triple pattern t. Suppose that h is not a homomorph-
ism between G and H. Then there is a triple 〈a, p, b〉 ∈ G such that 〈h(a), h(p), h(b)〉 /∈
H. Let t := 〈x, p, y〉 and x := 〈x, y〉. Then h(t) = 〈x, h(p), y〉, and 〈a, b〉 ∈ 〈t,x〉 (G) \
〈h(t),x〉 (H). We therefore have 〈t,x〉 (G) * 〈h(t),x〉 (H). Suppose next that h does not
satisfy (p1). Then there is a triple 〈a, h(p), b〉 ∈ H such that 〈a, p, b〉 /∈ G, and t := 〈x, p, y〉
separates G and H by a similar argument. ut

G 2U
n

H

Q

h
h(Q)

Figure1.

The class of p1-maps thus completely characterises the pairs of
graphs for which there is an exact triple-to-triple translation of
select queries from one to the other. Note that exactness here
does not mean that the source and target are isomorphic. The
target may contain more information in the form of triples, as
long as these triples do not have source edges that map to them.
Indeed, a p1-map need not even be injective:

Example 2. Assume we have the following RDF graphs: G :=

{〈a, p, b〉 , 〈a, q, b〉}, H1 := {〈a, r, b〉} and H2 := {〈a, r, b〉 , 〈c, s, d〉}. Then {p 7→ r, q 7→ r} is a
p1-map of G to H1, and of G to H2, given that h is the identity on vertexes.

Characterisation results similar to Theorem 2 and Theorem 3 are easily forthcoming
for p2- and p3-maps as well. The proofs are reruns with minor modifications of that for
p1-maps.

Theorem 4. Let h be any function from U to itself and suppose 〈S,x〉 (G) 6= ∅ and
varp(S) = ∅. Then, h : G −→ H is a p2-map iff u ∈ 〈h(S),x〉 (H) \ 〈S,x〉 (G) implies
u /∈ UG for any u ∈ u, and h : G −→ H is a p3-map iff u ∈ 〈h(S),x〉 (H) \ 〈S,x〉 (G) implies
u /∈ UG for some u ∈ u.

Different bounds may be used to exercise different levels of control depending on the
nature or interpretation of an edge. Common to all three is that they prohibit the rep-
resentative in the target of an edge in the source to relate vertexes from the source if
they are not so related at the source. Since they are all conservative in the same core
sense, these bounds may be used to exercise detailed and differentiated control over the
vocabulary involved in a construct query. More specifically, different predicates may be
restricted in different ways depending on the intended interpretation of those predicates:



p1-maps are suitable for that part of a data-set to which one would wish to remain abso-
lutely faithful, typically the domain-specific information that is collected and managed by
the issuer of the data-set. p2-maps are suitable for situations where you would want to
merge domain-specific knowledge from two different sources whilst keeping the inform-
ation from each of the sources unchanged. They are more forgiving than p1-maps in the
sense that they allow a relation to grow as long as every added pair relates new objects
only. Finally, p3-maps would typically be applied to vocabulary elements that are most
aptly considered as part of the logical or general-purpose vocabulary. For instance, ap-
plied to rdf:type, they allow types to be added to source elements as long as those types
are not already used in the source. In other words, p3-maps allow additional typing as
long as the added types do not occur in the source.

Example 3. Let G be the excerpt of triples listed in Example 1 and assume it is trans-
formed into the following target H:

<http://sws.ifi.uio.no/gulliste/kulturminne/208/5/6643335/597618>
rdf:type gul:Kontor, cidoc:E25.Man-Made_Feature ;
vcard:street-address "Akersgata 44" ;
vcard:zip-code "0180" ;
geo:long "10.749" ;
geo:lat "59.916" .

<http://sws.ifi.uio.no/gulliste/kulturminne/999/2/6644406/596768>
rdf:type cidoc:E25.Man-Made_Feature ;
geo:long "10.731" ;
geo:lat "59.926" .

The map of the source into the target shows the features of bounded p-maps given in
the preceding paragraph. The edges hvor:gateaddresse and hvor:postnummer are mapped
to respectively vcard:street-address and vcard:zip-code under the (p1) bound, indicat-
ing that these edges relate the exact same data as their counterparts in the source. The
edges geo:lat and geo:long are mapped to themselves under bound (p2), meaning that
new relationship may be added as long as they relate only new data elements, i.e. ele-
ments not originating from the source. The edge rdf:type is also mapped to itself under
a (p3) bound allowing new types to be added to the buildings in the yellow list (and new
buildings be given old types). The transformation is illustrated below:

G h(G)
H

VG VH \ VG

h
p-num

mer
g-adresse type

long

lat

z-cod
e\

s-address\
type\

type
\\\

long\

lat\

type\\

long\\

lat\\

Blue ( \ ), green ( \\ ) and purple ( \\\ ) arrows, represent triples satisfying bound (p1),
(p2) and (p3), respectively. The set of target vertexes is partitioned into two sets, VG and
VH \ VG, illustrated by the dashed line.

Conservativeness (in our sense) is preserved by composition:



Theorem 5. Let h1 be a p-map of G to H that satisfies a bound pi, and h2 a p-map of H
to I that satisfies a bound pj , and suppose pi logically entails pj . Then h2 ◦ h1 is a p-map
that satisfies pj .

As the theorem shows, a composition of two bounded p-maps will satisfy the weakest
of the two bounds. Since they are both conservative in the above-mentioned sense, we
can claim that the use of bounded p-maps counteract cumulative error in iterated data
transformation.

Note that SPARQL graph patterns and SPARQL templates are similar to RDF graphs
in the sense that they too are sets of triples. Thus, we may extend the notion of a p-map
accordingly by including variables in the domain and letting the p-map be the identity on
those variables. Clearly, if h is a p-map of the latter sort, then we have var(t) = var(h(t))

for any triple pattern t. Moreover, for triple patterns where no edge is a variable, µ and
h commute: µ(h(t)) = h(µ(t)). This allows us to prove the following result:

Theorem 6. Let 〈C, S〉 be a construct query, where C contains no variables as edges. If
h is a p-map of S to C which is bounded by one of (p1)–(p3), then h is a p-map under the
same bound of 〈S, S〉 (G) to 〈C, S〉 (G).

Proof. In the limiting case that JSKG = ∅, we have 〈C, S〉 (G) = ∅ as well, whence the
theorem holds vacuously. For the principal case where JSKG 6= ∅ suppose g ∈ 〈S, S〉 (G) =
∪µ∈JSKG(µ(ρµ(S)). By Definition 3 we have that S does not contain blank nodes, so g ∈
∪µ∈JSKG(µ(S)). It follows that g = µ(t) for a triple pattern t in S and some µ ∈ JSKG.
By assumption, h is a p-map of S to C, whence h(t) is a triple pattern in C, and since
var(h(t)) = var(t), it follows that µ(h(t)) ∈ ∪µ∈JSKG(µ(ρµ(C)). It remains to show that
h(g) = µ(h(t)). Since g = µ(t) it suffices to show that h(µ(t)) = µ(h(t)), which is just the
commutativity of µ and h. The relationships between the different graphs are illustrated
in Figure 2. Now assume that h from S to C is restricted by a bound (p1)–(p3), indicated
by (p) in the figure. Then for every t ∈ C there is a t′ ∈ S such that the bound holds. For
all µ such that µ(t) ∈ 〈C, S〉 (G) we have µ(t′) ∈ 〈S, S〉 (G), but then the p-map h must be
restricted by the same bound as between 〈S, S〉 (G) and 〈C, S〉 (G). ut

S C

〈S, S〉 (G) 〈C, S〉 (G)

h

(p)

µ µ

h

(p)

Figure2.

Thus, if there is a bounded p-map from the WHERE

block to the CONSTRUCT block in a construct query,
then any sub-graph that matches the former can
be p-mapped with the same bound into the result
of the query. By the properties of bounded p-maps,
therefore, we are licensed to say that the construct
query is a conservative transformation.

5 Generalising the Conservativeness
Criterion

We take ourselves to have demonstrated that a bounded p-map is an interesting kind of
structure-preserving map for the purpose of maintaining information content across re-
peated transformation of RDF data. Needless to say triple-to-triple transformations are
very restrictive. As Example 1 shows, many construct queries seem to have a legitimate



claim to conservativity even though they fall outside of this class. The purpose of the
present section is therefore to put the concept of a p-map to more creative use and ex-
pand the class of RDF graphs that we recognise as conservative in relation to others.
More specifically, we shall generalise the notion of a p-map from a triple-to-triple trans-
formation to a sub-graph to sub-graph transformation, no longer requiring that pairs of
vertexes be consistently and non-distortively related by triples—only that they be so re-
lated by sub-graphs. The point is to have a transformation that is conservative in much
the same sense as a bounded p-map is. That is, the transformation should satisfy the
property that if a sub-graph of H is expressed purely in terms of representatives of
structural elements of G, then it reflects an actual sub-graph of G. We shall illustrate
this approach by considering a function that maps paths in G to paths in H. This partic-
ular choice is motivated by Example 1 and similar ones which show that many construct
queries can indeed be considered as transformations mapping triples to paths, or paths
to paths more generally.

Definition 13. A walk is a non-empty sequence α of triples α := 〈g1, g2, . . . , gn〉 such that
π3(gi) = π1(gi+1) for 1 ≤ i < n. We shall let len(α) = n denote the length of α, whilst
px(α) := π1(g1) and dt(α) := π3(gn) will denote the proximal and distal vertexes of α,
respectively. A cycle is a walk α where dt(α) = px(α). A path is a walk where no proper
segment forms a cycle.

Note that we only consider finite paths. The set of paths in an RDF graph G, denoted G↑,
is thus finite too. Cycles are allowed, as long as they do not contain smaller cycles, and
triples are considered as unary paths (or unary cycles if the vertexes are the same). We
next introduce two equivalence relations on paths:

Definition 14. Let α and β be paths. We define the equivalence relations =V and =E on
paths as

1. α =V β iff px(α) = px(β) and dt(α) = dt(β)
2. α =E β iff α equals β, except that the respective proximal and distal vertexes of α

and β may differ.

In the case where α is a path and g a triple we shall abuse this notation slightly, writing
α =E g to mean α =E 〈g〉, and similarly for =V .

Clearly, if two paths are both =V -equivalent and =E-equivalent, then they are the same
path. Neither relation factors blank nodes into the notion of sub-graph equivalence. This
is an obvious further development which we shall comment on below. By the use of the
relations =E and =V it is possible to impose restrictions that intuitively constrain the
transformation of paths to paths in the same way that a bound constrains the transform-
ation of triples to triples.

Consider the diagram in Figure 3. Here κG and κH are functions that return the
closure under composition—a notion yet to be defined—of the two RDF graphs G and
H. We shall say that a bound on maps of paths corresponds to a bound on p-maps if
for every f , G↑ and H↑ where f : G↑ −→ H↑, there is an h : κG(G

↑) −→ κH(H↑) such
that f satisfies the path map bound iff h satisfies the p-map bound. If that is the case,
then a consistent relation between triples in the top row is reflected by a consistent
relation between paths in the lower row, whence f may be used in loco parentis for h to



measure the conservativeness of H wrt. G. To that end, we next define the closure under
composition of an RDF graph, and state a few properties of this operation:

Definition 15. A composition function κ for an RDF graph G is a function of type κ :

G↑ −→ T such that

1. α =V κ(α),
2. α =E β iff κ(α) =E κ(β),
3. π2(κ(α)) = π2(α), if len(α) = 1, otherwise π2(κ(α)) /∈ UG.

κG(G
↑) κH(H↑)

G↑ H↑

h

κG κH

f

Figure3.

According to this definition, a composition function is
such that every non-unary path in G is correlated with a
triple whose edge is new to G. Essentially for this reason,
composition functions always exist:

Lemma 3. There is a composition function for every
RDF graph G.

Moreover, if the triples in κ(G↑) that represent paths in G
do not employ edges that are new toG, a correspondence
between f and h of the requisite kind may not exist:

Example 4. Let G := {〈a, p, b〉 , 〈c, q, d〉 , 〈d, r, e〉}, then G↑ = {〈g〉 | g ∈ G} ∪ α, where α :=

〈〈c, q, d〉 , 〈d, r, e〉〉. Moreover, let κ1 and κ2 be functions where, for all g ∈ G, κ1(〈g〉) =

κ2(〈g〉) = g, and κ1(α) = 〈c, b, e〉 and κ2(α) = 〈c, s, e〉. Consult Figure 4 for the setup of
this example. Note that κ2 is a composition function for G, while κ1 is not since the edge
of κ1(α) is not fresh. A consequence of this is that the identity id on G↑, which is clearly a
path-map that satisfies bound (c1), does not induce a p-map from κ1(G

↑) to κ2(G↑), since
such a p-map needs to send the edge of κ1(α) to itself as b is also a vertex in κ1(G

↑) (cf.
Proposition 1).

G ∪ 〈c, b, e〉 G ∪ 〈c, s, e〉

G↑ G↑

6h

c1 c2

id

Figure4.

A composition function for G extends G, and
puts G↑ and κ(G↑) in one-to-one correspond-
ence, as one would expect:

Proposition 2. If κ is a composition function
for G, then G ⊆ κ(G↑).

Proof. G↑ contains all of the triples of G as
paths of length 1. By Definition 15(1) κ is the
identity on the vertexes in all paths, and by Definition 15(3) κ also maps the edges of
these singleton paths to themselves. ut

Lemma 4. A composition function κ for G is a bijection between G↑ and κ(G↑).

Proof. Let κ be a composition function for G. Surjectiveness holds trivially. For injective-
ness, suppose κ(α) = κ(β). We need to show that α = β. It suffices to show that α =E β

and α =V β. The former is Definition 15(2). For the latter we have α =V κ(α) = κ(β) =V β

by Definition 15(1) and the supposition. Thus, since κ(α) = κ(β) entails κ(α) =V κ(β) we
are done. ut



Turning to path-maps, that is, to functions of type f : T ↑ −→ T ↑, we are not interested
in all path-maps, only those that can be used to ‘emulate’ p-maps. For want of a better
name we shall call them c-maps:

Definition 16. A c-map is a path-map f where:

1. the relation {(g, g′) | (〈g〉 , 〈g′〉) ∈ f} is a p-map,
2. α =V f(α),
3. if α =E β, then f(α) =E f(β),
4. len(α) ≤ len(f(α)).

The class of c-maps thus consists of those path-maps that behave like a p-map on unary
paths (1), are sensitive to =V - and =E-equivalence (2, 3), and never truncate paths (4).
The next theorem shows that every c-map of G↑ to H↑ induces a p-map of κG(G) to
κH(H), for some κG and κH :

Lemma 5. Let κG, κH be composition functions for RDF graphs G and H, respectively.
Then every path-map f : G↑ −→ H↑ induces a p-map hf of κG(G↑) to κH(H↑), defined by
letting hf be the identity on vertexes and putting hf (π2(κG(α))) = π2(κH(f(α))).

Proof. We need to show two things: 1) that hf is a function from the vertexes and edges
of κG(G↑) to those of κH(H↑), and 2) that hf (g) ∈ κH(H↑) for every g ∈ κG(G↑). For 2),
put g := κG(α). Since κG is a bijection between G↑ and κG(G

↑), by Lemma 4, there is
a path α ∈ G↑ such that α = κ−G(g). Now, κH(f(α)) ∈ κH(H↑) and hf (g) = κH(f(α)) by
the definition of hf , so we are done. It remains to show 2): Since hf is the identity on
vertexes it suffices to check that it is functional for arbitrary edges p ∈ κG(G

↑). There
are two cases to consider. First case: p is not a vertex in κG(G↑). Then the desired result
follows immediately from Definition 16(3) and Definition 15(2). Second case: p is a vertex
κG(G

↑). It suffices to show that p is not mapped to a vertex b ∈ κH(H↑) unless p = b. Let
p be the edge of g, and put κG(α) := g. There are two subcases: If len(α) > 1, then by
Definition 16(4) we have that len(f(α)) > 1 whence π2(κH(f(α))) := b is not a vertex in
κH(H↑) by Definition 15(3), so the condition holds trivially. For the second case, assume
that len(α) = 1 and that β = f(α). By Definition 15(3), α = 〈g〉. If len(β) = 1, then since f
is a p-map on singletons by Definition 16(1) and κH(〈g〉) = g by Definition 15(3), we are
done. If, on the other hand, len(β) > 1, then, by Definition 15(3), π2(κH(f(α))) is again
not a vertex in κH(H↑), so the proof is complete. ut

We now generalise the p-map bounds of Definition 12 to bounds on c-maps:

Definition 17. Suppose α and β are paths in the RDF graphs G and H, respectively. We
shall say that a c-map f : G↑ −→ H↑ is respectively a c1-, c2- or c3-map if one of the
following conditions holds:

f(α) =E β ⇒ f(γ) = β for some γ ∈ G↑ (c1)

f(α) =E β and {px(β), dt(β)} ∩ VG 6= ∅ ⇒ f(γ) = β for some γ ∈ G↑ (c2)

f(α) =E β and {px(β), dt(β)} ⊆ VG ⇒ f(γ) = β for some γ ∈ G↑ (c3)

That these bounds are in fact generalisations of those of Definition 12 is established by
the following theorem:



Theorem 7. Let f be a c-map of RDF graph G to RDF graph H, κG and κH composition
functions for G and H, respectively, and hf the induced p-map of κG(G↑) to κH(H↑). Then
f is a cn-map iff hf is a pn-map, for n = 1, 2 or 3.

Proof. Suppose f is a c3-map and assume that there is a triple g := 〈a, hf (p), b〉 ∈ κH(H↑)

where a, b ∈ VG. We need to show that 〈a, p, b〉 ∈ κG(G
↑). Given that κG and κH are

surjective by Lemma 4, let α ∈ G↑ and β ∈ H↑ be such that π2(κG(α)) = p and κH(β) =

g. By the definition of hf given in Lemma 5, f(α) =E β, so by bound (c3) there is a
γ ∈ G↑ where f(γ) = β. We have g =V β =V γ by Definition 16 and Definition 15, and
γ =E α by Definition 16, since f(α) =E β. This means that κG(γ) = 〈a, p, b〉. For the
converse direction, suppose hf is a p3-map and assume, for some α ∈ G↑ and β ∈ H↑,
that f(α) =E β and a, b ∈ VG, where a := px(β) and b := dt(β). By the definition of hf we
have hf (π2(κG(α))) = π2(κH(β)), so let κH(β) := 〈a, hf (p), b〉. Since hf satisfies (p1), we
have 〈a, p, b〉 ∈ κG(G↑). By Lemma 4, there is a γ ∈ G↑ such that κG(γ) = 〈a, p, b〉. Since
κG(γ) =E κG(α), we have f(γ) =E f(α), and given that γ =V f(γ) =V β, we arrive at
f(γ) = β. It is easy to adjust the membership of a, b, px(β), dt(β) in VG in the proof and
confirm the claim for two other pair of corresponding bounds. ut

Expanding the class of conservative construct queries to also handle paths requires the
following generalisation of Theorem 6:

Theorem 8. Let 〈C, S〉 be a construct query, where C contains no blank nodes and no
variables as edges. If f is a cn-map of S to C, then f is a cn-map of 〈S, S〉 (G) to 〈C, S〉 (G),
for n = 1, 2, 3.

Proof (Sketch). Let α be a chain in S and let f be a c-map of C to S. If f(α) contains
blank nodes then, due to the relabelling function ρ, f(α) may be instantiated differently
for each pair of objects that matches the vertexes of α. This means we may not have
µ(ρµ(f(α))) =E µ′(ρµ′(f(α))), whence f is not a c-map of 〈S, S〉 (G) to 〈C, S〉 (G). In the
absence of blank nodes in C this situation cannot arise, ρ becomes redundant, and the
proof becomes a straightforward generalisation of that for Theorem 6. ut

As this proof-sketch is designed to show, extra care is required when the construct query
C contains blank nodes—as it does for instance in Example 1. However, the preceding
lemmata and theorems lay out all the essential steps. More specifically, all that is needed
in order to accommodate Example 1 and similar ones, is to substitute equivalence classes
of paths for paths throughout, where equivalence is equality up to relabelling of blank
nodes. The verification of this claim is a rerun with minor modifications, and has there-
fore been left out.

6 Computational properties

The problem of deciding whether there exists a homomorphism between two (standard)
graphs is well-known to be NP-complete. Since p-maps are more restricted than generic
graph homomorphisms, identifying p-maps between RDF graphs is an easier task. In fact
it can be done in polynomial time, the verification of which is supported by the following
lemmata:



Lemma 6. Let h1 and h2 be p-maps of G1 and G2 respectively to H. Then h1 ∪ h2 is a
p-map of G1 ∪G2 to H if h1(u) = h2(u) for all u ∈ dom(h1) ∩ dom(h2).

Proof. Suppose h1 and h2 are p-maps of G1 and G2 respectively to H such that h1(u) =
h2(u) for all u ∈ dom(h1) ∩ dom(h2). It suffices to prove that h1 ∪ h2 is a function,
that it is structure-preserving, and that it is an identity function on vertexes. We verify
structure-preservation only, the verification of the other two properties being essen-
tially similar: suppose 〈a, p, b〉 ∈ G1 ∪ G2. If 〈a, p, b〉 belongs to one, say G1, but not the
other then h1 ∪ h2(〈a, p, b〉) = h1(〈a, p, b〉) so we are done. If on the other hand 〈a, p, b〉 is
shared between G1 and G2 then h1 and h2 agree on all coordinates in the triple, whence
〈h1(a), h1(p), h1(b)〉 = 〈h2(a), h2(p), h2(b)〉 = 〈h1 ∪ h2(a), h1 ∪ h2(p), h1 ∪ h2(b)〉. ut

Lemma 7. If h1, h2 are bounded p-maps such that h1(u) = h2(u) for all u ∈ dom(h1) ∩
dom(h2). Then h1 ∪ h2 is a bounded p-map satisfying the weaker of the two bounds.

According to Lemma 6 the task of finding a p-map of G to H can be reduced to the task
of finding a set of p-maps of sub-graphs of G into H that are compatible wrt. to shared
domain elements. Lemma 7 then tells us that to check whether the resulting p-map is
bounded by some bound pn, it suffices to check whether each of the smaller maps is. This
procedure, each step of which is clearly polynomial, does not require any backtracking,
whence:

Theorem 9. Given two RDF graphs G and H, finding a p-map h : G −→ H, bounded or
not, is a problem polynomial in the size of G and H.

Proof (Sketch). For any RDF graphs G and H, fix the set VG of nodes occurring as ver-
texes in G. Then for each p ∈ EG construct a p-map of Gp := {〈a, p′, b〉 ∈ G | p′ = p} into
H. This amounts to iterating through the edges of H and finding one, say q, such that i)
〈a, p, b〉 ∈ Gp → 〈a, q, b〉 ∈ Hq and ii) if p ∈ VG then p = q. Lemma 6 tells us that the union
of these maps is a p-map of G to H, i.e. no choice of q for p is a wrong choice. There
is therefore no need for backtracking, whence a p-map can be computed in polynomial
time. To check whether it satisfies a given bound pn, it suffices by Lemma 7 to check that
each of the maps hp of Gp to Hq does. That is, for each element 〈a, q, b〉 ∈ Hq \Gp check
that the required triple is in Gp. This is clearly a polynomial check. ut

For c-maps the situation is more complex. Since the composition of an RDF graph may
be exponentially larger than the graph itself, the problem is no longer polynomial. More
precisely, if G is an RDF graph and κ a composition function for G, then |κ(G↑)| ≤∑|VG|
n=1 |EG| × n! . Yet, this is not a problem for any realistically sized construct query. An

experimental application is up and running at http://sws.ifi.uio.no/MapperDan/. Map-
per Dan takes two RDF graphs or a construct query as input, lets the user specify which
bounds to apply to which predicates, and checks whether there is a map under the given
bound between the two graphs or between the WHERE and CONSTRUCT block of the construct
query. In the cases where a bound is violated Mapper Dan offers guidance, if possible,
as to how to obtain a stratified map which satisfies the bounds. A map can be used to
translate the source RDF data to the target vocabulary, produce a construct query which
reflects the map, or to rewrite SPARQL queries.

http://sws.ifi.uio.no/MapperDan/


Input : RDF graphs G and H, bound pn.
Output: A p-map h bounded by pn, or ⊥ if none exists.
h := {〈a, a〉} for a ∈ VG;
for p ∈ EG

if p ∈ VG

if 〈a, p, b〉 ∈ G → 〈a, p, b〉 ∈ H

for 〈c, p, d〉 ∈ H \G
if not CheckBound(〈c, p, d〉 , pn) return ⊥;

else return ⊥;

else
bool found := false;;
for q ∈ EH

if not found and 〈a, p, b〉 ∈ G → 〈a, q, b〉 ∈ H

for 〈c, q, d〉 ∈ H \G
if not CheckBound(〈c, q, d〉 , pn) break;

h := h ∪ {〈p, q〉};;
found := true;

if not found return ⊥;

return h;

Algorithm 1: Computing a bounded p-map if one exists. The check for compliance with
the bounds is encapsulated in a boolean subroutine CheckBound.

7 Conclusion and future work

This paper provides a structural criterion that separates conservative from non-
conservative uses of SPARQL construct queries. Conservativity is here measured against
the ‘asserted content’ of the underlying source, which is required to be preserved by
the possible change of vocabulary induced by the construct clause. Our problem led us
to consider a class of RDF homomorphisms (p-maps) the existence of which guarantees
that the source and target interlock in a reciprocal simulation. Viewed as functions from
triples to triples, p-maps are computable in polynomial time. The complexity increases
with more complex graph patterns. The class of p-maps has other applications besides
that described here, e.g as the basis for a more refined notion of RDF merging. As of
today merging is based on the method of taking unions modulo the standardising apart
of blank nodes. If one also wants a uniform representation of the data thus collected
this method is too crude. What one would want, rather, is a way of transforming the
data by swapping vocabulary elements whilst, as far as it goes, preserving the informa-
tion content of all the involved sources (this is not easily achieved by subsuming a set of
properties or types under a common super-type in an ontology). Such a merge procedure
may turn out to be an important prerequisite for truly RESTful write operations on the
web of linked data.
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